SummationByParts/sbp/src/operators/algos.rs

1010 lines
31 KiB
Rust
Raw Normal View History

2021-01-18 21:37:24 +00:00
use super::*;
2021-01-28 18:18:34 +00:00
pub(crate) mod constmatrix {
2021-01-29 15:42:49 +00:00
#![allow(unused)]
2021-01-28 18:18:34 +00:00
/// A row-major matrix
2021-01-29 16:36:05 +00:00
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2021-01-29 16:47:13 +00:00
#[repr(C)]
2021-01-28 18:18:34 +00:00
pub struct Matrix<T, const M: usize, const N: usize> {
data: [[T; N]; M],
}
2021-01-28 19:59:11 +00:00
pub type RowVector<T, const N: usize> = Matrix<T, 1, N>;
pub type ColVector<T, const N: usize> = Matrix<T, N, 1>;
2021-01-28 18:18:34 +00:00
2021-01-29 16:36:05 +00:00
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
2021-01-28 18:18:34 +00:00
fn default() -> Self {
2021-01-29 16:36:05 +00:00
Self {
data: [[T::default(); N]; M],
2021-01-28 18:18:34 +00:00
}
}
}
impl<T, const M: usize, const N: usize> core::ops::Index<(usize, usize)> for Matrix<T, M, N> {
type Output = T;
#[inline(always)]
fn index(&self, (i, j): (usize, usize)) -> &Self::Output {
&self.data[i][j]
}
}
impl<T, const M: usize, const N: usize> core::ops::IndexMut<(usize, usize)> for Matrix<T, M, N> {
#[inline(always)]
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut Self::Output {
&mut self.data[i][j]
}
}
impl<T, const M: usize, const N: usize> core::ops::Index<usize> for Matrix<T, M, N> {
type Output = [T; N];
#[inline(always)]
fn index(&self, i: usize) -> &Self::Output {
&self.data[i]
}
}
impl<T, const M: usize, const N: usize> core::ops::IndexMut<usize> for Matrix<T, M, N> {
#[inline(always)]
fn index_mut(&mut self, i: usize) -> &mut Self::Output {
&mut self.data[i]
}
}
impl<T, const M: usize, const N: usize> Matrix<T, M, N> {
pub const fn new(data: [[T; N]; M]) -> Self {
Self { data }
}
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 18:18:34 +00:00
pub const fn nrows(&self) -> usize {
M
}
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 18:18:34 +00:00
pub const fn ncols(&self) -> usize {
N
}
pub fn matmul<const P: usize>(&self, other: &Matrix<T, N, P>) -> Matrix<T, M, P>
where
2021-01-29 15:42:49 +00:00
T: Copy + Default + core::ops::Add<Output = T> + core::ops::Mul<Output = T>,
2021-01-28 18:18:34 +00:00
{
let mut out = Matrix::default();
self.matmul_into(other, &mut out);
out
}
pub fn matmul_into<const P: usize>(
&self,
other: &Matrix<T, N, P>,
out: &mut Matrix<T, M, P>,
) where
2021-01-29 15:42:49 +00:00
T: Copy + Default + core::ops::Add<Output = T> + core::ops::Mul<Output = T>,
2021-01-28 18:18:34 +00:00
{
for i in 0..M {
for j in 0..P {
2021-01-28 20:59:13 +00:00
let mut t = T::default();
2021-01-28 18:18:34 +00:00
for k in 0..N {
2021-01-29 15:42:49 +00:00
t = t + self[(i, k)] * other[(k, j)];
2021-01-28 18:18:34 +00:00
}
2021-01-28 20:59:13 +00:00
out[(i, j)] = t;
2021-01-28 18:18:34 +00:00
}
}
}
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 23:08:31 +00:00
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.data.iter().flatten()
2021-01-28 19:59:11 +00:00
}
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 19:59:11 +00:00
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
self.data.iter_mut().flatten()
}
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 18:18:34 +00:00
pub fn iter_rows(
&self,
) -> impl ExactSizeIterator<Item = &[T; N]> + DoubleEndedIterator<Item = &[T; N]> {
(0..M).map(move |i| &self[i])
}
2021-01-28 19:59:11 +00:00
pub fn flip(&self) -> Self
where
2021-01-29 16:36:05 +00:00
T: Default + Copy,
2021-01-28 19:59:11 +00:00
{
let mut v = Self::default();
for i in 0..M {
for j in 0..N {
2021-01-29 16:36:05 +00:00
v[(i, j)] = self[(M - 1 - i, N - 1 - j)]
2021-01-28 19:59:11 +00:00
}
}
v
}
}
impl<T, const N: usize> ColVector<T, N> {
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 19:59:11 +00:00
pub fn map_to_col(slice: &[T; N]) -> &ColVector<T, N> {
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
}
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-28 19:59:11 +00:00
pub fn map_to_col_mut(slice: &mut [T; N]) -> &mut ColVector<T, N> {
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
}
}
impl<T, const N: usize> RowVector<T, N> {
pub fn map_to_row(slice: &[T; N]) -> &Self {
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
}
pub fn map_to_row_mut(slice: &mut [T; N]) -> &mut Self {
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
}
}
2021-01-29 15:42:49 +00:00
impl<T, const M: usize, const N: usize> core::ops::MulAssign<T> for Matrix<T, M, N>
2021-01-28 19:59:11 +00:00
where
2021-01-29 15:42:49 +00:00
T: Copy + core::ops::MulAssign<T>,
2021-01-28 19:59:11 +00:00
{
2021-01-29 07:32:26 +00:00
#[inline(always)]
2021-01-29 15:42:49 +00:00
fn mul_assign(&mut self, other: T) {
2021-01-28 19:59:11 +00:00
self.iter_mut().for_each(|x| *x *= other)
}
2021-01-28 18:18:34 +00:00
}
#[cfg(test)]
mod tests {
use super::{super::*, *};
#[test]
fn construct_copy_type() {
let _m0 = Matrix::<i32, 4, 3>::default();
let _m1: Matrix<u8, 8, 8> = Matrix::default();
let _m2 = Matrix::new([[1, 2], [3, 4]]);
}
#[test]
fn matmul() {
let m1 = Matrix::new([[1_u8, 2, 3], [4, 5, 6]]);
let m2 = Matrix::new([[7_u8, 8, 9, 10], [11, 12, 13, 14], [15, 16, 17, 18]]);
let m3 = m1.matmul(&m2);
assert_eq!(m3, Matrix::new([[74, 80, 86, 92], [173, 188, 203, 218]]));
}
}
}
2021-01-28 19:59:11 +00:00
pub(crate) use constmatrix::{ColVector, Matrix, RowVector};
#[inline(always)]
pub(crate) fn diff_op_1d_matrix<const M: usize, const N: usize, const D: usize>(
block: &Matrix<Float, M, N>,
2021-01-29 16:36:05 +00:00
blockend: &Matrix<Float, M, N>,
diag: &RowVector<Float, D>,
2021-01-28 19:59:11 +00:00
optype: OperatorType,
prev: ArrayView1<Float>,
mut fut: ArrayViewMut1<Float>,
) {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[0];
assert!(nx >= 2 * M);
assert!(nx >= N);
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
for (bl, f) in block.iter_rows().zip(&mut fut) {
let diff = bl
.iter()
.zip(prev.iter())
.map(|(x, y)| x * y)
.sum::<Float>();
*f = diff * idx;
}
// The window needs to be aligned to the diagonal elements,
// based on the block size
let window_elems_to_skip = M - ((D - 1) / 2);
for (window, f) in prev
.windows(D)
.into_iter()
.skip(window_elems_to_skip)
.zip(fut.iter_mut().skip(M))
.take(nx - 2 * M)
{
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
*f = diff * idx;
}
2021-01-29 16:36:05 +00:00
for (bl, f) in blockend.iter_rows().zip(fut.iter_mut().rev().take(M).rev()) {
2021-01-28 19:59:11 +00:00
let diff = bl
.iter()
2021-01-29 16:36:05 +00:00
.zip(prev.iter())
2021-01-28 19:59:11 +00:00
.map(|(x, y)| x * y)
.sum::<Float>();
2021-01-29 16:36:05 +00:00
*f = diff * idx;
2021-01-28 19:59:11 +00:00
}
}
2021-01-29 15:42:49 +00:00
#[cfg(feature = "fast-float")]
2021-01-28 21:31:54 +00:00
mod fastfloat {
use super::*;
#[repr(transparent)]
2021-01-29 15:42:49 +00:00
#[derive(Copy, Clone, Debug, PartialEq, Default)]
2021-01-28 21:31:54 +00:00
pub(crate) struct FastFloat(Float);
use core::intrinsics::{fadd_fast, fmul_fast};
impl core::ops::Mul for FastFloat {
type Output = Self;
2021-01-29 15:42:49 +00:00
#[inline(always)]
2021-01-28 21:31:54 +00:00
fn mul(self, o: Self) -> Self::Output {
unsafe { Self(fmul_fast(self.0, o.0)) }
}
}
2021-01-29 15:42:49 +00:00
impl core::ops::Add for FastFloat {
type Output = Self;
#[inline(always)]
fn add(self, o: FastFloat) -> Self::Output {
unsafe { Self(fadd_fast(self.0, o.0)) }
2021-01-28 21:31:54 +00:00
}
}
2021-01-29 15:42:49 +00:00
impl core::ops::MulAssign<FastFloat> for FastFloat {
#[inline(always)]
2021-01-28 21:31:54 +00:00
fn mul_assign(&mut self, o: FastFloat) {
unsafe {
self.0 = fmul_fast(self.0, o.0);
}
}
}
impl core::ops::Mul for &FastFloat {
type Output = FastFloat;
2021-01-29 15:42:49 +00:00
#[inline(always)]
2021-01-28 21:31:54 +00:00
fn mul(self, o: Self) -> Self::Output {
unsafe { FastFloat(fmul_fast(self.0, o.0)) }
}
}
impl From<Float> for FastFloat {
2021-01-29 15:42:49 +00:00
#[inline(always)]
2021-01-28 21:31:54 +00:00
fn from(f: Float) -> Self {
Self(f)
}
}
}
2021-01-28 23:14:56 +00:00
#[cfg(feature = "fast-float")]
2021-01-28 21:31:54 +00:00
use fastfloat::FastFloat;
2021-01-28 19:59:11 +00:00
#[inline(always)]
pub(crate) fn diff_op_1d_slice_matrix<const M: usize, const N: usize, const D: usize>(
block: &Matrix<Float, M, N>,
2021-01-28 20:59:13 +00:00
endblock: &Matrix<Float, M, N>,
2021-01-28 19:59:11 +00:00
diag: &RowVector<Float, D>,
optype: OperatorType,
prev: &[Float],
fut: &mut [Float],
) {
2021-01-28 23:14:56 +00:00
#[cfg(feature = "fast-float")]
let (block, endblock, diag, prev, fut) = {
use std::mem::transmute;
unsafe {
(
transmute::<_, &Matrix<FastFloat, M, N>>(block),
transmute::<_, &Matrix<FastFloat, M, N>>(endblock),
transmute::<_, &RowVector<FastFloat, D>>(diag),
transmute::<_, &[FastFloat]>(prev),
transmute::<_, &mut [FastFloat]>(fut),
)
}
};
2021-01-28 21:31:54 +00:00
2021-01-28 19:59:11 +00:00
assert_eq!(prev.len(), fut.len());
let nx = prev.len();
assert!(nx >= 2 * M);
assert!(nx >= N);
let prev = &prev[..nx];
let fut = &mut fut[..nx];
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
2021-01-28 23:08:31 +00:00
let idx = 1.0 / dx;
2021-01-28 23:14:56 +00:00
#[cfg(feature = "fast-float")]
2021-01-28 23:08:31 +00:00
let idx = FastFloat::from(idx);
2021-01-28 19:59:11 +00:00
2021-01-29 16:59:35 +00:00
// Help aliasing analysis
let (futb1, fut) = fut.split_at_mut(M);
let (fut, futb2) = fut.split_at_mut(nx - 2 * M);
2021-01-28 19:59:11 +00:00
use std::convert::TryInto;
{
2021-01-29 16:47:13 +00:00
let prev = ColVector::<_, N>::map_to_col(prev.array_windows::<N>().next().unwrap());
2021-01-29 16:59:35 +00:00
let fut = ColVector::<_, M>::map_to_col_mut(futb1.try_into().unwrap());
2021-01-28 19:59:11 +00:00
2021-01-28 21:31:54 +00:00
block.matmul_into(prev, fut);
2021-01-29 15:42:49 +00:00
*fut *= idx;
2021-01-28 19:59:11 +00:00
}
// The window needs to be aligned to the diagonal elements,
// based on the block size
let window_elems_to_skip = M - ((D - 1) / 2);
for (window, f) in prev
.array_windows::<D>()
.skip(window_elems_to_skip)
2021-01-29 16:59:35 +00:00
.zip(fut.array_chunks_mut::<1>())
2021-01-28 19:59:11 +00:00
{
2021-01-28 21:31:54 +00:00
let fut = ColVector::<_, 1>::map_to_col_mut(f);
2021-01-28 19:59:11 +00:00
let prev = ColVector::<_, D>::map_to_col(window);
2021-01-28 21:31:54 +00:00
diag.matmul_into(prev, fut);
2021-01-29 15:42:49 +00:00
*fut *= idx;
2021-01-28 19:59:11 +00:00
}
{
2021-01-28 23:08:31 +00:00
let prev = prev.array_windows::<N>().next_back().unwrap();
2021-01-28 20:27:25 +00:00
let prev = ColVector::<_, N>::map_to_col(prev);
2021-01-29 16:59:35 +00:00
let fut = ColVector::<_, M>::map_to_col_mut(futb2.try_into().unwrap());
2021-01-28 19:59:11 +00:00
2021-01-28 21:31:54 +00:00
endblock.matmul_into(prev, fut);
2021-01-29 15:42:49 +00:00
*fut *= idx;
2021-01-28 19:59:11 +00:00
}
}
2021-01-18 21:37:24 +00:00
#[inline(always)]
pub(crate) fn diff_op_1d(
block: &[&[Float]],
diag: &[Float],
symmetry: Symmetry,
optype: OperatorType,
prev: ArrayView1<Float>,
mut fut: ArrayViewMut1<Float>,
) {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[0];
assert!(nx >= 2 * block.len());
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
for (bl, f) in block.iter().zip(&mut fut) {
let diff = bl
.iter()
.zip(prev.iter())
.map(|(x, y)| x * y)
.sum::<Float>();
*f = diff * idx;
}
// The window needs to be aligned to the diagonal elements,
// based on the block size
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
for (window, f) in prev
.windows(diag.len())
.into_iter()
.skip(window_elems_to_skip)
.zip(fut.iter_mut().skip(block.len()))
.take(nx - 2 * block.len())
{
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
*f = diff * idx;
}
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
let diff = bl
.iter()
.zip(prev.iter().rev())
.map(|(x, y)| x * y)
.sum::<Float>();
*f = idx
* if symmetry == Symmetry::Symmetric {
diff
} else {
-diff
};
}
}
#[derive(PartialEq, Copy, Clone)]
pub(crate) enum Symmetry {
Symmetric,
AntiSymmetric,
}
#[derive(PartialEq, Copy, Clone)]
pub(crate) enum OperatorType {
Normal,
H2,
}
#[inline(always)]
#[allow(unused)]
pub(crate) fn diff_op_col_naive(
block: &'static [&'static [Float]],
diag: &'static [Float],
symmetry: Symmetry,
optype: OperatorType,
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
#[inline(always)]
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * block.len());
assert_eq!(prev.strides()[0], 1);
assert_eq!(fut.strides()[0], 1);
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
fut.fill(0.0);
// First block
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1))) {
debug_assert_eq!(fut.len(), prev.shape()[0]);
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
debug_assert_eq!(prev.len(), fut.len());
fut.scaled_add(idx * bl, &prev);
}
}
let half_diag_width = (diag.len() - 1) / 2;
assert!(half_diag_width <= block.len());
// Diagonal entries
for (ifut, mut fut) in fut
.axis_iter_mut(ndarray::Axis(1))
.enumerate()
.skip(block.len())
.take(nx - 2 * block.len())
{
for (id, &d) in diag.iter().enumerate() {
let offset = ifut - half_diag_width + id;
fut.scaled_add(idx * d, &prev.slice(ndarray::s![.., offset]))
}
}
// End block
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1)).rev()) {
fut.fill(0.0);
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1)).rev()) {
if symmetry == Symmetry::Symmetric {
fut.scaled_add(idx * bl, &prev);
} else {
fut.scaled_add(-idx * bl, &prev);
}
}
}
}
}
#[inline(always)]
pub(crate) fn diff_op_col(
block: &'static [&'static [Float]],
diag: &'static [Float],
symmetry: Symmetry,
optype: OperatorType,
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
diff_op_col_simd(block, diag, symmetry, optype)
}
#[inline(always)]
pub(crate) fn diff_op_col_simd(
block: &'static [&'static [Float]],
diag: &'static [Float],
symmetry: Symmetry,
optype: OperatorType,
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
#[inline(always)]
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * block.len());
assert_eq!(prev.strides()[0], 1);
assert_eq!(fut.strides()[0], 1);
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
#[cfg(not(feature = "f32"))]
type SimdT = packed_simd::f64x8;
#[cfg(feature = "f32")]
type SimdT = packed_simd::f32x16;
let ny = prev.shape()[0];
// How many elements that can be simdified
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
let half_diag_width = (diag.len() - 1) / 2;
assert!(half_diag_width <= block.len());
let fut_base_ptr = fut.as_mut_ptr();
let fut_stride = fut.strides()[1];
let fut_ptr = |j, i| {
debug_assert!(j < ny && i < nx);
unsafe { fut_base_ptr.offset(fut_stride * i as isize + j as isize) }
};
let prev_base_ptr = prev.as_ptr();
let prev_stride = prev.strides()[1];
let prev_ptr = |j, i| {
debug_assert!(j < ny && i < nx);
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
};
// Not algo necessary, but gives performance increase
assert_eq!(fut_stride, prev_stride);
// First block
{
for (ifut, &bl) in block.iter().enumerate() {
for j in (0..simdified).step_by(SimdT::lanes()) {
let index_to_simd = |i| unsafe {
// j never moves past end of slice due to step_by and
// rounding down
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
prev_ptr(j, i),
SimdT::lanes(),
))
};
let mut f = SimdT::splat(0.0);
for (iprev, &bl) in bl.iter().enumerate() {
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
}
f *= idx;
unsafe {
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
fut_ptr(j, ifut),
SimdT::lanes(),
));
}
}
for j in simdified..ny {
unsafe {
let mut f = 0.0;
for (iprev, bl) in bl.iter().enumerate() {
f += bl * *prev_ptr(j, iprev);
}
*fut_ptr(j, ifut) = f * idx;
}
}
}
}
// Diagonal elements
{
for ifut in block.len()..nx - block.len() {
for j in (0..simdified).step_by(SimdT::lanes()) {
let index_to_simd = |i| unsafe {
// j never moves past end of slice due to step_by and
// rounding down
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
prev_ptr(j, i),
SimdT::lanes(),
))
};
let mut f = SimdT::splat(0.0);
for (id, &d) in diag.iter().enumerate() {
let offset = ifut - half_diag_width + id;
f = index_to_simd(offset).mul_adde(SimdT::splat(d), f);
}
f *= idx;
unsafe {
// puts simd along stride 1, j never goes past end of slice
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
fut_ptr(j, ifut),
SimdT::lanes(),
));
}
}
for j in simdified..ny {
let mut f = 0.0;
for (id, &d) in diag.iter().enumerate() {
let offset = ifut - half_diag_width + id;
unsafe {
f += d * *prev_ptr(j, offset);
}
}
unsafe {
*fut_ptr(j, ifut) = idx * f;
}
}
}
}
// End block
{
// Get blocks and corresponding offsets
// (rev to iterate in ifut increasing order)
for (bl, ifut) in block.iter().zip((0..nx).rev()) {
for j in (0..simdified).step_by(SimdT::lanes()) {
let index_to_simd = |i| unsafe {
// j never moves past end of slice due to step_by and
// rounding down
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
prev_ptr(j, i),
SimdT::lanes(),
))
};
let mut f = SimdT::splat(0.0);
for (&bl, iprev) in bl.iter().zip((0..nx).rev()) {
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
}
f = if symmetry == Symmetry::Symmetric {
f * idx
} else {
-f * idx
};
unsafe {
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
fut_ptr(j, ifut),
SimdT::lanes(),
));
}
}
for j in simdified..ny {
unsafe {
let mut f = 0.0;
for (&bl, iprev) in bl.iter().zip((0..nx).rev()).rev() {
f += bl * *prev_ptr(j, iprev);
}
*fut_ptr(j, ifut) = if symmetry == Symmetry::Symmetric {
f * idx
} else {
-f * idx
};
}
}
}
}
}
}
#[inline(always)]
fn product_fast<'a>(
u: impl Iterator<Item = &'a Float>,
v: impl Iterator<Item = &'a Float>,
) -> Float {
use std::intrinsics::{fadd_fast, fmul_fast};
u.zip(v).fold(0.0, |acc, (&u, &v)| unsafe {
// We do not care about the order of multiplication nor addition
fadd_fast(acc, fmul_fast(u, v))
})
}
2021-01-29 16:36:05 +00:00
#[inline(always)]
pub(crate) fn diff_op_col_matrix<const M: usize, const N: usize, const D: usize>(
block: &Matrix<Float, M, N>,
block2: &Matrix<Float, M, N>,
diag: &RowVector<Float, D>,
optype: OperatorType,
prev: ArrayView2<Float>,
2021-01-30 14:58:03 +00:00
fut: ArrayViewMut2<Float>,
2021-01-29 16:36:05 +00:00
) {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * M);
assert_eq!(prev.strides()[0], 1);
assert_eq!(fut.strides()[0], 1);
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
#[cfg(not(feature = "f32"))]
type SimdT = packed_simd::f64x8;
#[cfg(feature = "f32")]
type SimdT = packed_simd::f32x16;
let ny = prev.shape()[0];
// How many elements that can be simdified
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
let half_diag_width = (D - 1) / 2;
assert!(half_diag_width <= M);
let fut_stride = fut.strides()[1];
let prev_base_ptr = prev.as_ptr();
let prev_stride = prev.strides()[1];
let prev_ptr = |j, i| {
debug_assert!(j < ny && i < nx);
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
};
// Not algo necessary, but gives performance increase
assert_eq!(fut_stride, prev_stride);
2021-01-30 14:58:03 +00:00
use ndarray::Axis;
let (mut fut1, fut) = fut.split_at(Axis(1), M);
let (mut fut, mut fut2) = fut.split_at(Axis(1), nx - 2 * M);
2021-01-29 16:36:05 +00:00
// First block
{
2021-01-30 14:58:03 +00:00
let prev = prev.slice(ndarray::s![.., ..N]);
let (prevb, prevl) = prev.split_at(Axis(0), simdified);
for (mut fut, &bl) in fut1.axis_iter_mut(Axis(1)).zip(block.iter_rows()) {
let fut = fut.as_slice_mut().unwrap();
let fut = &mut fut[..ny];
let mut fut = fut.chunks_exact_mut(SimdT::lanes());
let mut prev = prevb.axis_chunks_iter(Axis(0), SimdT::lanes());
for (fut, prev) in fut.by_ref().zip(prev.by_ref()) {
2021-01-29 16:36:05 +00:00
let mut f = SimdT::splat(0.0);
2021-01-30 14:58:03 +00:00
for (&bl, prev) in bl.iter().zip(prev.axis_iter(Axis(1))) {
let prev = prev.to_slice().unwrap();
let prev = SimdT::from_slice_unaligned(prev);
f = prev.mul_adde(SimdT::splat(bl), f);
2021-01-29 16:36:05 +00:00
}
f *= idx;
2021-01-30 14:58:03 +00:00
f.write_to_slice_unaligned(fut);
2021-01-29 16:36:05 +00:00
}
2021-01-30 14:58:03 +00:00
for (fut, prev) in fut
.into_remainder()
.iter_mut()
.zip(prevl.axis_iter(Axis(0)))
{
let mut f = 0.0;
for (bl, prev) in bl.iter().zip(prev.iter()) {
f += bl * prev;
2021-01-29 16:36:05 +00:00
}
2021-01-30 14:58:03 +00:00
*fut = f * idx;
2021-01-29 16:36:05 +00:00
}
}
}
// Diagonal elements
{
2021-01-30 14:58:03 +00:00
let window_elems_to_skip = M - ((D - 1) / 2);
let prev = prev.slice(ndarray::s![.., window_elems_to_skip..]);
let prev = prev.windows((ny, D));
for (mut fut, prev) in fut.axis_iter_mut(Axis(1)).zip(prev) {
let fut = fut.as_slice_mut().unwrap();
let fut = &mut fut[..ny];
let mut fut = fut.chunks_exact_mut(SimdT::lanes());
let (prevb, prevl) = prev.split_at(Axis(0), simdified);
let prev = prevb.axis_chunks_iter(Axis(0), SimdT::lanes());
for (fut, prev) in fut.by_ref().zip(prev) {
2021-01-29 16:36:05 +00:00
let mut f = SimdT::splat(0.0);
2021-01-30 14:58:03 +00:00
for (&d, prev) in diag.iter().zip(prev.axis_iter(Axis(1))) {
let prev = prev.to_slice().unwrap();
let prev = SimdT::from_slice_unaligned(prev);
f = prev.mul_adde(SimdT::splat(d), f);
2021-01-29 16:36:05 +00:00
}
f *= idx;
2021-01-30 14:58:03 +00:00
f.write_to_slice_unaligned(fut);
2021-01-29 16:36:05 +00:00
}
2021-01-30 14:58:03 +00:00
for (fut, prev) in fut
.into_remainder()
.into_iter()
.zip(prevl.axis_iter(Axis(0)))
{
2021-01-29 16:36:05 +00:00
let mut f = 0.0;
2021-01-30 14:58:03 +00:00
for (&d, prev) in diag.iter().zip(prev) {
f += d * prev;
2021-01-29 16:36:05 +00:00
}
2021-01-30 14:58:03 +00:00
*fut = idx * f;
2021-01-29 16:36:05 +00:00
}
}
}
// End block
{
2021-01-30 14:58:03 +00:00
for (mut fut, &bl) in fut2.axis_iter_mut(Axis(1)).zip(block2.iter_rows()) {
let fut = fut.as_slice_mut().unwrap();
let fut = &mut fut[..ny];
let mut fut = fut.chunks_exact_mut(SimdT::lanes());
for (fut, j) in fut.by_ref().zip((0..simdified).step_by(SimdT::lanes())) {
2021-01-29 16:36:05 +00:00
let index_to_simd = |i| unsafe {
// j never moves past end of slice due to step_by and
// rounding down
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
prev_ptr(j, i),
SimdT::lanes(),
))
};
let mut f = SimdT::splat(0.0);
for (iprev, &bl) in (nx - N..nx).zip(bl.iter()) {
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
}
f *= idx;
2021-01-30 14:58:03 +00:00
f.write_to_slice_unaligned(fut);
2021-01-29 16:36:05 +00:00
}
2021-01-30 14:58:03 +00:00
for (fut, j) in fut.into_remainder().into_iter().zip(simdified..ny) {
2021-01-29 16:36:05 +00:00
unsafe {
let mut f = 0.0;
for (iprev, bl) in (nx - N..nx).zip(bl.iter()) {
f += bl * *prev_ptr(j, iprev);
}
2021-01-30 14:58:03 +00:00
*fut = f * idx;
2021-01-29 16:36:05 +00:00
}
}
}
}
}
2021-01-18 21:37:24 +00:00
#[inline(always)]
pub(crate) fn diff_op_row(
block: &'static [&'static [Float]],
diag: &'static [Float],
symmetry: Symmetry,
optype: OperatorType,
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
#[inline(always)]
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * block.len());
assert_eq!(prev.strides()[1], 1);
assert_eq!(fut.strides()[1], 1);
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
for (prev, mut fut) in prev
.axis_iter(ndarray::Axis(0))
.zip(fut.axis_iter_mut(ndarray::Axis(0)))
{
let prev = prev.as_slice().unwrap();
let fut = fut.as_slice_mut().unwrap();
assert_eq!(prev.len(), fut.len());
assert!(prev.len() >= 2 * block.len());
for (bl, f) in block.iter().zip(fut.iter_mut()) {
let diff = product_fast(bl.iter(), prev[..bl.len()].iter());
*f = diff * idx;
}
// The window needs to be aligned to the diagonal elements,
// based on the block size
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
for (window, f) in prev
.windows(diag.len())
.skip(window_elems_to_skip)
.zip(fut.iter_mut().skip(block.len()))
.take(nx - 2 * block.len())
{
let diff = product_fast(diag.iter(), window.iter());
*f = diff * idx;
}
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
let diff = product_fast(bl.iter(), prev.iter().rev());
*f = idx
* if symmetry == Symmetry::Symmetric {
diff
} else {
-diff
};
}
}
}
}
#[cfg(feature = "sparse")]
2021-01-25 19:53:56 +00:00
pub(crate) fn sparse_from_block(
2021-01-18 21:37:24 +00:00
block: &[&[Float]],
diag: &[Float],
symmetry: Symmetry,
optype: OperatorType,
n: usize,
) -> sprs::CsMat<Float> {
assert!(n >= 2 * block.len());
let nnz = {
let block_elems = block.iter().fold(0, |acc, x| {
acc + x
.iter()
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc })
});
let diag_elems = diag
.iter()
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
2 * block_elems + (n - 2 * block.len()) * diag_elems
};
let mut mat = sprs::TriMat::with_capacity((n, n), nnz);
let dx = if optype == OperatorType::H2 {
1.0 / (n - 2) as Float
} else {
1.0 / (n - 1) as Float
};
let idx = 1.0 / dx;
for (j, bl) in block.iter().enumerate() {
for (i, &b) in bl.iter().enumerate() {
if b == 0.0 {
continue;
}
mat.add_triplet(j, i, b * idx);
}
}
for j in block.len()..n - block.len() {
let half_diag_len = diag.len() / 2;
for (&d, i) in diag.iter().zip(j - half_diag_len..) {
if d == 0.0 {
continue;
}
mat.add_triplet(j, i, d * idx);
}
}
for (bl, j) in block.iter().zip((0..n).rev()).rev() {
for (&b, i) in bl.iter().zip((0..n).rev()).rev() {
if b == 0.0 {
continue;
}
if symmetry == Symmetry::AntiSymmetric {
mat.add_triplet(j, i, -b * idx);
} else {
mat.add_triplet(j, i, b * idx);
}
}
}
mat.to_csr()
}
#[cfg(feature = "sparse")]
2021-01-25 19:53:56 +00:00
pub(crate) fn h_matrix(diag: &[Float], n: usize, is_h2: bool) -> sprs::CsMat<Float> {
2021-01-18 21:37:24 +00:00
let h = if is_h2 {
1.0 / (n - 2) as Float
} else {
1.0 / (n - 1) as Float
};
let nmiddle = n - 2 * diag.len();
let iter = diag
.iter()
.chain(std::iter::repeat(&1.0).take(nmiddle))
.chain(diag.iter().rev())
.map(|&x| h * x);
let mut mat = sprs::TriMat::with_capacity((n, n), n);
for (i, d) in iter.enumerate() {
mat.add_triplet(i, i, d);
}
mat.to_csr()
}