move algos to separate file
This commit is contained in:
parent
dc126938bb
commit
5de82f393b
|
@ -1,6 +1,9 @@
|
|||
#![allow(clippy::excessive_precision)]
|
||||
#![allow(clippy::unreadable_literal)]
|
||||
|
||||
mod algos;
|
||||
pub(crate) use algos::*;
|
||||
|
||||
use crate::Float;
|
||||
use ndarray::{ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2};
|
||||
|
||||
|
@ -142,498 +145,6 @@ impl UpwindOperator2d for (Box<dyn UpwindOperator2d>, Box<dyn UpwindOperator2d>)
|
|||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn diff_op_1d(
|
||||
block: &[&[Float]],
|
||||
diag: &[Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
prev: ArrayView1<Float>,
|
||||
mut fut: ArrayViewMut1<Float>,
|
||||
) {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[0];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
for (bl, f) in block.iter().zip(&mut fut) {
|
||||
let diff = bl
|
||||
.iter()
|
||||
.zip(prev.iter())
|
||||
.map(|(x, y)| x * y)
|
||||
.sum::<Float>();
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
// The window needs to be aligned to the diagonal elements,
|
||||
// based on the block size
|
||||
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
|
||||
|
||||
for (window, f) in prev
|
||||
.windows(diag.len())
|
||||
.into_iter()
|
||||
.skip(window_elems_to_skip)
|
||||
.zip(fut.iter_mut().skip(block.len()))
|
||||
.take(nx - 2 * block.len())
|
||||
{
|
||||
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
|
||||
let diff = bl
|
||||
.iter()
|
||||
.zip(prev.iter().rev())
|
||||
.map(|(x, y)| x * y)
|
||||
.sum::<Float>();
|
||||
|
||||
*f = idx
|
||||
* if symmetry == Symmetry::Symmetric {
|
||||
diff
|
||||
} else {
|
||||
-diff
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Copy, Clone)]
|
||||
enum Symmetry {
|
||||
Symmetric,
|
||||
AntiSymmetric,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Copy, Clone)]
|
||||
enum OperatorType {
|
||||
Normal,
|
||||
H2,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[allow(unused)]
|
||||
fn diff_op_col_naive(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
#[inline(always)]
|
||||
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[1];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
assert_eq!(prev.strides()[0], 1);
|
||||
assert_eq!(fut.strides()[0], 1);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
fut.fill(0.0);
|
||||
|
||||
// First block
|
||||
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1))) {
|
||||
debug_assert_eq!(fut.len(), prev.shape()[0]);
|
||||
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
||||
debug_assert_eq!(prev.len(), fut.len());
|
||||
fut.scaled_add(idx * bl, &prev);
|
||||
}
|
||||
}
|
||||
|
||||
let half_diag_width = (diag.len() - 1) / 2;
|
||||
assert!(half_diag_width <= block.len());
|
||||
|
||||
// Diagonal entries
|
||||
for (ifut, mut fut) in fut
|
||||
.axis_iter_mut(ndarray::Axis(1))
|
||||
.enumerate()
|
||||
.skip(block.len())
|
||||
.take(nx - 2 * block.len())
|
||||
{
|
||||
for (id, &d) in diag.iter().enumerate() {
|
||||
let offset = ifut - half_diag_width + id;
|
||||
fut.scaled_add(idx * d, &prev.slice(ndarray::s![.., offset]))
|
||||
}
|
||||
}
|
||||
|
||||
// End block
|
||||
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1)).rev()) {
|
||||
fut.fill(0.0);
|
||||
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1)).rev()) {
|
||||
if symmetry == Symmetry::Symmetric {
|
||||
fut.scaled_add(idx * bl, &prev);
|
||||
} else {
|
||||
fut.scaled_add(-idx * bl, &prev);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn diff_op_col(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
diff_op_col_simd(block, diag, symmetry, optype)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn diff_op_col_simd(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
#[inline(always)]
|
||||
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[1];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
assert_eq!(prev.strides()[0], 1);
|
||||
assert_eq!(fut.strides()[0], 1);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
#[cfg(not(feature = "f32"))]
|
||||
type SimdT = packed_simd::f64x8;
|
||||
#[cfg(feature = "f32")]
|
||||
type SimdT = packed_simd::f32x16;
|
||||
|
||||
let ny = prev.shape()[0];
|
||||
// How many elements that can be simdified
|
||||
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
|
||||
|
||||
let half_diag_width = (diag.len() - 1) / 2;
|
||||
assert!(half_diag_width <= block.len());
|
||||
|
||||
let fut_base_ptr = fut.as_mut_ptr();
|
||||
let fut_stride = fut.strides()[1];
|
||||
let fut_ptr = |j, i| {
|
||||
debug_assert!(j < ny && i < nx);
|
||||
unsafe { fut_base_ptr.offset(fut_stride * i as isize + j as isize) }
|
||||
};
|
||||
|
||||
let prev_base_ptr = prev.as_ptr();
|
||||
let prev_stride = prev.strides()[1];
|
||||
let prev_ptr = |j, i| {
|
||||
debug_assert!(j < ny && i < nx);
|
||||
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
|
||||
};
|
||||
|
||||
// Not algo necessary, but gives performance increase
|
||||
assert_eq!(fut_stride, prev_stride);
|
||||
|
||||
// First block
|
||||
{
|
||||
for (ifut, &bl) in block.iter().enumerate() {
|
||||
for j in (0..simdified).step_by(SimdT::lanes()) {
|
||||
let index_to_simd = |i| unsafe {
|
||||
// j never moves past end of slice due to step_by and
|
||||
// rounding down
|
||||
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
||||
prev_ptr(j, i),
|
||||
SimdT::lanes(),
|
||||
))
|
||||
};
|
||||
let mut f = SimdT::splat(0.0);
|
||||
for (iprev, &bl) in bl.iter().enumerate() {
|
||||
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
||||
}
|
||||
f *= idx;
|
||||
|
||||
unsafe {
|
||||
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
||||
fut_ptr(j, ifut),
|
||||
SimdT::lanes(),
|
||||
));
|
||||
}
|
||||
}
|
||||
for j in simdified..ny {
|
||||
unsafe {
|
||||
let mut f = 0.0;
|
||||
for (iprev, bl) in bl.iter().enumerate() {
|
||||
f += bl * *prev_ptr(j, iprev);
|
||||
}
|
||||
*fut_ptr(j, ifut) = f * idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Diagonal elements
|
||||
{
|
||||
for ifut in block.len()..nx - block.len() {
|
||||
for j in (0..simdified).step_by(SimdT::lanes()) {
|
||||
let index_to_simd = |i| unsafe {
|
||||
// j never moves past end of slice due to step_by and
|
||||
// rounding down
|
||||
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
||||
prev_ptr(j, i),
|
||||
SimdT::lanes(),
|
||||
))
|
||||
};
|
||||
let mut f = SimdT::splat(0.0);
|
||||
for (id, &d) in diag.iter().enumerate() {
|
||||
let offset = ifut - half_diag_width + id;
|
||||
f = index_to_simd(offset).mul_adde(SimdT::splat(d), f);
|
||||
}
|
||||
f *= idx;
|
||||
unsafe {
|
||||
// puts simd along stride 1, j never goes past end of slice
|
||||
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
||||
fut_ptr(j, ifut),
|
||||
SimdT::lanes(),
|
||||
));
|
||||
}
|
||||
}
|
||||
for j in simdified..ny {
|
||||
let mut f = 0.0;
|
||||
for (id, &d) in diag.iter().enumerate() {
|
||||
let offset = ifut - half_diag_width + id;
|
||||
unsafe {
|
||||
f += d * *prev_ptr(j, offset);
|
||||
}
|
||||
}
|
||||
unsafe {
|
||||
*fut_ptr(j, ifut) = idx * f;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// End block
|
||||
{
|
||||
// Get blocks and corresponding offsets
|
||||
// (rev to iterate in ifut increasing order)
|
||||
for (bl, ifut) in block.iter().zip((0..nx).rev()) {
|
||||
for j in (0..simdified).step_by(SimdT::lanes()) {
|
||||
let index_to_simd = |i| unsafe {
|
||||
// j never moves past end of slice due to step_by and
|
||||
// rounding down
|
||||
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
||||
prev_ptr(j, i),
|
||||
SimdT::lanes(),
|
||||
))
|
||||
};
|
||||
let mut f = SimdT::splat(0.0);
|
||||
for (&bl, iprev) in bl.iter().zip((0..nx).rev()) {
|
||||
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
||||
}
|
||||
f = if symmetry == Symmetry::Symmetric {
|
||||
f * idx
|
||||
} else {
|
||||
-f * idx
|
||||
};
|
||||
unsafe {
|
||||
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
||||
fut_ptr(j, ifut),
|
||||
SimdT::lanes(),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
for j in simdified..ny {
|
||||
unsafe {
|
||||
let mut f = 0.0;
|
||||
for (&bl, iprev) in bl.iter().zip((0..nx).rev()).rev() {
|
||||
f += bl * *prev_ptr(j, iprev);
|
||||
}
|
||||
*fut_ptr(j, ifut) = if symmetry == Symmetry::Symmetric {
|
||||
f * idx
|
||||
} else {
|
||||
-f * idx
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn product_fast<'a>(
|
||||
u: impl Iterator<Item = &'a Float>,
|
||||
v: impl Iterator<Item = &'a Float>,
|
||||
) -> Float {
|
||||
use std::intrinsics::{fadd_fast, fmul_fast};
|
||||
u.zip(v).fold(0.0, |acc, (&u, &v)| unsafe {
|
||||
// We do not care about the order of multiplication nor addition
|
||||
fadd_fast(acc, fmul_fast(u, v))
|
||||
})
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn diff_op_row(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
#[inline(always)]
|
||||
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[1];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
assert_eq!(prev.strides()[1], 1);
|
||||
assert_eq!(fut.strides()[1], 1);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
for (prev, mut fut) in prev
|
||||
.axis_iter(ndarray::Axis(0))
|
||||
.zip(fut.axis_iter_mut(ndarray::Axis(0)))
|
||||
{
|
||||
let prev = prev.as_slice().unwrap();
|
||||
let fut = fut.as_slice_mut().unwrap();
|
||||
assert_eq!(prev.len(), fut.len());
|
||||
assert!(prev.len() >= 2 * block.len());
|
||||
|
||||
for (bl, f) in block.iter().zip(fut.iter_mut()) {
|
||||
let diff = product_fast(bl.iter(), prev[..bl.len()].iter());
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
// The window needs to be aligned to the diagonal elements,
|
||||
// based on the block size
|
||||
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
|
||||
|
||||
for (window, f) in prev
|
||||
.windows(diag.len())
|
||||
.skip(window_elems_to_skip)
|
||||
.zip(fut.iter_mut().skip(block.len()))
|
||||
.take(nx - 2 * block.len())
|
||||
{
|
||||
let diff = product_fast(diag.iter(), window.iter());
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
|
||||
let diff = product_fast(bl.iter(), prev.iter().rev());
|
||||
|
||||
*f = idx
|
||||
* if symmetry == Symmetry::Symmetric {
|
||||
diff
|
||||
} else {
|
||||
-diff
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "sparse")]
|
||||
fn sparse_from_block(
|
||||
block: &[&[Float]],
|
||||
diag: &[Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
n: usize,
|
||||
) -> sprs::CsMat<Float> {
|
||||
assert!(n >= 2 * block.len());
|
||||
|
||||
let nnz = {
|
||||
let block_elems = block.iter().fold(0, |acc, x| {
|
||||
acc + x
|
||||
.iter()
|
||||
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc })
|
||||
});
|
||||
|
||||
let diag_elems = diag
|
||||
.iter()
|
||||
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
|
||||
|
||||
2 * block_elems + (n - 2 * block.len()) * diag_elems
|
||||
};
|
||||
|
||||
let mut mat = sprs::TriMat::with_capacity((n, n), nnz);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (n - 2) as Float
|
||||
} else {
|
||||
1.0 / (n - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
for (j, bl) in block.iter().enumerate() {
|
||||
for (i, &b) in bl.iter().enumerate() {
|
||||
if b == 0.0 {
|
||||
continue;
|
||||
}
|
||||
mat.add_triplet(j, i, b * idx);
|
||||
}
|
||||
}
|
||||
|
||||
for j in block.len()..n - block.len() {
|
||||
let half_diag_len = diag.len() / 2;
|
||||
for (&d, i) in diag.iter().zip(j - half_diag_len..) {
|
||||
if d == 0.0 {
|
||||
continue;
|
||||
}
|
||||
mat.add_triplet(j, i, d * idx);
|
||||
}
|
||||
}
|
||||
|
||||
for (bl, j) in block.iter().zip((0..n).rev()).rev() {
|
||||
for (&b, i) in bl.iter().zip((0..n).rev()).rev() {
|
||||
if b == 0.0 {
|
||||
continue;
|
||||
}
|
||||
if symmetry == Symmetry::AntiSymmetric {
|
||||
mat.add_triplet(j, i, -b * idx);
|
||||
} else {
|
||||
mat.add_triplet(j, i, b * idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mat.to_csr()
|
||||
}
|
||||
|
||||
#[cfg(feature = "sparse")]
|
||||
fn h_matrix(diag: &[Float], n: usize, is_h2: bool) -> sprs::CsMat<Float> {
|
||||
let h = if is_h2 {
|
||||
1.0 / (n - 2) as Float
|
||||
} else {
|
||||
1.0 / (n - 1) as Float
|
||||
};
|
||||
let nmiddle = n - 2 * diag.len();
|
||||
let iter = diag
|
||||
.iter()
|
||||
.chain(std::iter::repeat(&1.0).take(nmiddle))
|
||||
.chain(diag.iter().rev())
|
||||
.map(|&x| h * x);
|
||||
|
||||
let mut mat = sprs::TriMat::with_capacity((n, n), n);
|
||||
for (i, d) in iter.enumerate() {
|
||||
mat.add_triplet(i, i, d);
|
||||
}
|
||||
mat.to_csr()
|
||||
}
|
||||
|
||||
mod upwind4;
|
||||
pub use upwind4::Upwind4;
|
||||
mod upwind9;
|
||||
|
|
|
@ -0,0 +1,493 @@
|
|||
use super::*;
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn diff_op_1d(
|
||||
block: &[&[Float]],
|
||||
diag: &[Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
prev: ArrayView1<Float>,
|
||||
mut fut: ArrayViewMut1<Float>,
|
||||
) {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[0];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
for (bl, f) in block.iter().zip(&mut fut) {
|
||||
let diff = bl
|
||||
.iter()
|
||||
.zip(prev.iter())
|
||||
.map(|(x, y)| x * y)
|
||||
.sum::<Float>();
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
// The window needs to be aligned to the diagonal elements,
|
||||
// based on the block size
|
||||
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
|
||||
|
||||
for (window, f) in prev
|
||||
.windows(diag.len())
|
||||
.into_iter()
|
||||
.skip(window_elems_to_skip)
|
||||
.zip(fut.iter_mut().skip(block.len()))
|
||||
.take(nx - 2 * block.len())
|
||||
{
|
||||
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
|
||||
let diff = bl
|
||||
.iter()
|
||||
.zip(prev.iter().rev())
|
||||
.map(|(x, y)| x * y)
|
||||
.sum::<Float>();
|
||||
|
||||
*f = idx
|
||||
* if symmetry == Symmetry::Symmetric {
|
||||
diff
|
||||
} else {
|
||||
-diff
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Copy, Clone)]
|
||||
pub(crate) enum Symmetry {
|
||||
Symmetric,
|
||||
AntiSymmetric,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Copy, Clone)]
|
||||
pub(crate) enum OperatorType {
|
||||
Normal,
|
||||
H2,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[allow(unused)]
|
||||
pub(crate) fn diff_op_col_naive(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
#[inline(always)]
|
||||
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[1];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
assert_eq!(prev.strides()[0], 1);
|
||||
assert_eq!(fut.strides()[0], 1);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
fut.fill(0.0);
|
||||
|
||||
// First block
|
||||
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1))) {
|
||||
debug_assert_eq!(fut.len(), prev.shape()[0]);
|
||||
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
||||
debug_assert_eq!(prev.len(), fut.len());
|
||||
fut.scaled_add(idx * bl, &prev);
|
||||
}
|
||||
}
|
||||
|
||||
let half_diag_width = (diag.len() - 1) / 2;
|
||||
assert!(half_diag_width <= block.len());
|
||||
|
||||
// Diagonal entries
|
||||
for (ifut, mut fut) in fut
|
||||
.axis_iter_mut(ndarray::Axis(1))
|
||||
.enumerate()
|
||||
.skip(block.len())
|
||||
.take(nx - 2 * block.len())
|
||||
{
|
||||
for (id, &d) in diag.iter().enumerate() {
|
||||
let offset = ifut - half_diag_width + id;
|
||||
fut.scaled_add(idx * d, &prev.slice(ndarray::s![.., offset]))
|
||||
}
|
||||
}
|
||||
|
||||
// End block
|
||||
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1)).rev()) {
|
||||
fut.fill(0.0);
|
||||
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1)).rev()) {
|
||||
if symmetry == Symmetry::Symmetric {
|
||||
fut.scaled_add(idx * bl, &prev);
|
||||
} else {
|
||||
fut.scaled_add(-idx * bl, &prev);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn diff_op_col(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
diff_op_col_simd(block, diag, symmetry, optype)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn diff_op_col_simd(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
#[inline(always)]
|
||||
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[1];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
assert_eq!(prev.strides()[0], 1);
|
||||
assert_eq!(fut.strides()[0], 1);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
#[cfg(not(feature = "f32"))]
|
||||
type SimdT = packed_simd::f64x8;
|
||||
#[cfg(feature = "f32")]
|
||||
type SimdT = packed_simd::f32x16;
|
||||
|
||||
let ny = prev.shape()[0];
|
||||
// How many elements that can be simdified
|
||||
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
|
||||
|
||||
let half_diag_width = (diag.len() - 1) / 2;
|
||||
assert!(half_diag_width <= block.len());
|
||||
|
||||
let fut_base_ptr = fut.as_mut_ptr();
|
||||
let fut_stride = fut.strides()[1];
|
||||
let fut_ptr = |j, i| {
|
||||
debug_assert!(j < ny && i < nx);
|
||||
unsafe { fut_base_ptr.offset(fut_stride * i as isize + j as isize) }
|
||||
};
|
||||
|
||||
let prev_base_ptr = prev.as_ptr();
|
||||
let prev_stride = prev.strides()[1];
|
||||
let prev_ptr = |j, i| {
|
||||
debug_assert!(j < ny && i < nx);
|
||||
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
|
||||
};
|
||||
|
||||
// Not algo necessary, but gives performance increase
|
||||
assert_eq!(fut_stride, prev_stride);
|
||||
|
||||
// First block
|
||||
{
|
||||
for (ifut, &bl) in block.iter().enumerate() {
|
||||
for j in (0..simdified).step_by(SimdT::lanes()) {
|
||||
let index_to_simd = |i| unsafe {
|
||||
// j never moves past end of slice due to step_by and
|
||||
// rounding down
|
||||
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
||||
prev_ptr(j, i),
|
||||
SimdT::lanes(),
|
||||
))
|
||||
};
|
||||
let mut f = SimdT::splat(0.0);
|
||||
for (iprev, &bl) in bl.iter().enumerate() {
|
||||
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
||||
}
|
||||
f *= idx;
|
||||
|
||||
unsafe {
|
||||
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
||||
fut_ptr(j, ifut),
|
||||
SimdT::lanes(),
|
||||
));
|
||||
}
|
||||
}
|
||||
for j in simdified..ny {
|
||||
unsafe {
|
||||
let mut f = 0.0;
|
||||
for (iprev, bl) in bl.iter().enumerate() {
|
||||
f += bl * *prev_ptr(j, iprev);
|
||||
}
|
||||
*fut_ptr(j, ifut) = f * idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Diagonal elements
|
||||
{
|
||||
for ifut in block.len()..nx - block.len() {
|
||||
for j in (0..simdified).step_by(SimdT::lanes()) {
|
||||
let index_to_simd = |i| unsafe {
|
||||
// j never moves past end of slice due to step_by and
|
||||
// rounding down
|
||||
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
||||
prev_ptr(j, i),
|
||||
SimdT::lanes(),
|
||||
))
|
||||
};
|
||||
let mut f = SimdT::splat(0.0);
|
||||
for (id, &d) in diag.iter().enumerate() {
|
||||
let offset = ifut - half_diag_width + id;
|
||||
f = index_to_simd(offset).mul_adde(SimdT::splat(d), f);
|
||||
}
|
||||
f *= idx;
|
||||
unsafe {
|
||||
// puts simd along stride 1, j never goes past end of slice
|
||||
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
||||
fut_ptr(j, ifut),
|
||||
SimdT::lanes(),
|
||||
));
|
||||
}
|
||||
}
|
||||
for j in simdified..ny {
|
||||
let mut f = 0.0;
|
||||
for (id, &d) in diag.iter().enumerate() {
|
||||
let offset = ifut - half_diag_width + id;
|
||||
unsafe {
|
||||
f += d * *prev_ptr(j, offset);
|
||||
}
|
||||
}
|
||||
unsafe {
|
||||
*fut_ptr(j, ifut) = idx * f;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// End block
|
||||
{
|
||||
// Get blocks and corresponding offsets
|
||||
// (rev to iterate in ifut increasing order)
|
||||
for (bl, ifut) in block.iter().zip((0..nx).rev()) {
|
||||
for j in (0..simdified).step_by(SimdT::lanes()) {
|
||||
let index_to_simd = |i| unsafe {
|
||||
// j never moves past end of slice due to step_by and
|
||||
// rounding down
|
||||
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
||||
prev_ptr(j, i),
|
||||
SimdT::lanes(),
|
||||
))
|
||||
};
|
||||
let mut f = SimdT::splat(0.0);
|
||||
for (&bl, iprev) in bl.iter().zip((0..nx).rev()) {
|
||||
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
||||
}
|
||||
f = if symmetry == Symmetry::Symmetric {
|
||||
f * idx
|
||||
} else {
|
||||
-f * idx
|
||||
};
|
||||
unsafe {
|
||||
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
||||
fut_ptr(j, ifut),
|
||||
SimdT::lanes(),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
for j in simdified..ny {
|
||||
unsafe {
|
||||
let mut f = 0.0;
|
||||
for (&bl, iprev) in bl.iter().zip((0..nx).rev()).rev() {
|
||||
f += bl * *prev_ptr(j, iprev);
|
||||
}
|
||||
*fut_ptr(j, ifut) = if symmetry == Symmetry::Symmetric {
|
||||
f * idx
|
||||
} else {
|
||||
-f * idx
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn product_fast<'a>(
|
||||
u: impl Iterator<Item = &'a Float>,
|
||||
v: impl Iterator<Item = &'a Float>,
|
||||
) -> Float {
|
||||
use std::intrinsics::{fadd_fast, fmul_fast};
|
||||
u.zip(v).fold(0.0, |acc, (&u, &v)| unsafe {
|
||||
// We do not care about the order of multiplication nor addition
|
||||
fadd_fast(acc, fmul_fast(u, v))
|
||||
})
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn diff_op_row(
|
||||
block: &'static [&'static [Float]],
|
||||
diag: &'static [Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
||||
#[inline(always)]
|
||||
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
||||
assert_eq!(prev.shape(), fut.shape());
|
||||
let nx = prev.shape()[1];
|
||||
assert!(nx >= 2 * block.len());
|
||||
|
||||
assert_eq!(prev.strides()[1], 1);
|
||||
assert_eq!(fut.strides()[1], 1);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (nx - 2) as Float
|
||||
} else {
|
||||
1.0 / (nx - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
for (prev, mut fut) in prev
|
||||
.axis_iter(ndarray::Axis(0))
|
||||
.zip(fut.axis_iter_mut(ndarray::Axis(0)))
|
||||
{
|
||||
let prev = prev.as_slice().unwrap();
|
||||
let fut = fut.as_slice_mut().unwrap();
|
||||
assert_eq!(prev.len(), fut.len());
|
||||
assert!(prev.len() >= 2 * block.len());
|
||||
|
||||
for (bl, f) in block.iter().zip(fut.iter_mut()) {
|
||||
let diff = product_fast(bl.iter(), prev[..bl.len()].iter());
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
// The window needs to be aligned to the diagonal elements,
|
||||
// based on the block size
|
||||
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
|
||||
|
||||
for (window, f) in prev
|
||||
.windows(diag.len())
|
||||
.skip(window_elems_to_skip)
|
||||
.zip(fut.iter_mut().skip(block.len()))
|
||||
.take(nx - 2 * block.len())
|
||||
{
|
||||
let diff = product_fast(diag.iter(), window.iter());
|
||||
*f = diff * idx;
|
||||
}
|
||||
|
||||
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
|
||||
let diff = product_fast(bl.iter(), prev.iter().rev());
|
||||
|
||||
*f = idx
|
||||
* if symmetry == Symmetry::Symmetric {
|
||||
diff
|
||||
} else {
|
||||
-diff
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "sparse")]
|
||||
fn sparse_from_block(
|
||||
block: &[&[Float]],
|
||||
diag: &[Float],
|
||||
symmetry: Symmetry,
|
||||
optype: OperatorType,
|
||||
n: usize,
|
||||
) -> sprs::CsMat<Float> {
|
||||
assert!(n >= 2 * block.len());
|
||||
|
||||
let nnz = {
|
||||
let block_elems = block.iter().fold(0, |acc, x| {
|
||||
acc + x
|
||||
.iter()
|
||||
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc })
|
||||
});
|
||||
|
||||
let diag_elems = diag
|
||||
.iter()
|
||||
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
|
||||
|
||||
2 * block_elems + (n - 2 * block.len()) * diag_elems
|
||||
};
|
||||
|
||||
let mut mat = sprs::TriMat::with_capacity((n, n), nnz);
|
||||
|
||||
let dx = if optype == OperatorType::H2 {
|
||||
1.0 / (n - 2) as Float
|
||||
} else {
|
||||
1.0 / (n - 1) as Float
|
||||
};
|
||||
let idx = 1.0 / dx;
|
||||
|
||||
for (j, bl) in block.iter().enumerate() {
|
||||
for (i, &b) in bl.iter().enumerate() {
|
||||
if b == 0.0 {
|
||||
continue;
|
||||
}
|
||||
mat.add_triplet(j, i, b * idx);
|
||||
}
|
||||
}
|
||||
|
||||
for j in block.len()..n - block.len() {
|
||||
let half_diag_len = diag.len() / 2;
|
||||
for (&d, i) in diag.iter().zip(j - half_diag_len..) {
|
||||
if d == 0.0 {
|
||||
continue;
|
||||
}
|
||||
mat.add_triplet(j, i, d * idx);
|
||||
}
|
||||
}
|
||||
|
||||
for (bl, j) in block.iter().zip((0..n).rev()).rev() {
|
||||
for (&b, i) in bl.iter().zip((0..n).rev()).rev() {
|
||||
if b == 0.0 {
|
||||
continue;
|
||||
}
|
||||
if symmetry == Symmetry::AntiSymmetric {
|
||||
mat.add_triplet(j, i, -b * idx);
|
||||
} else {
|
||||
mat.add_triplet(j, i, b * idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mat.to_csr()
|
||||
}
|
||||
|
||||
#[cfg(feature = "sparse")]
|
||||
fn h_matrix(diag: &[Float], n: usize, is_h2: bool) -> sprs::CsMat<Float> {
|
||||
let h = if is_h2 {
|
||||
1.0 / (n - 2) as Float
|
||||
} else {
|
||||
1.0 / (n - 1) as Float
|
||||
};
|
||||
let nmiddle = n - 2 * diag.len();
|
||||
let iter = diag
|
||||
.iter()
|
||||
.chain(std::iter::repeat(&1.0).take(nmiddle))
|
||||
.chain(diag.iter().rev())
|
||||
.map(|&x| h * x);
|
||||
|
||||
let mut mat = sprs::TriMat::with_capacity((n, n), n);
|
||||
for (i, d) in iter.enumerate() {
|
||||
mat.add_triplet(i, i, d);
|
||||
}
|
||||
mat.to_csr()
|
||||
}
|
Loading…
Reference in New Issue