2021-01-18 21:37:24 +00:00
|
|
|
use super::*;
|
|
|
|
|
2021-01-28 18:18:34 +00:00
|
|
|
pub(crate) mod constmatrix {
|
|
|
|
/// A row-major matrix
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
|
|
pub struct Matrix<T, const M: usize, const N: usize> {
|
|
|
|
data: [[T; N]; M],
|
|
|
|
}
|
2021-01-28 19:59:11 +00:00
|
|
|
pub type RowVector<T, const N: usize> = Matrix<T, 1, N>;
|
|
|
|
pub type ColVector<T, const N: usize> = Matrix<T, N, 1>;
|
2021-01-28 18:18:34 +00:00
|
|
|
|
|
|
|
impl<T: Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
|
|
|
|
fn default() -> Self {
|
|
|
|
use std::mem::MaybeUninit;
|
|
|
|
let mut d: [[MaybeUninit<T>; N]; M] = unsafe { MaybeUninit::uninit().assume_init() };
|
|
|
|
|
|
|
|
for row in d.iter_mut() {
|
|
|
|
for item in row.iter_mut() {
|
|
|
|
*item = MaybeUninit::new(T::default());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let data = unsafe { std::mem::transmute_copy::<_, [[T; N]; M]>(&d) };
|
|
|
|
Self { data }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const M: usize, const N: usize> core::ops::Index<(usize, usize)> for Matrix<T, M, N> {
|
|
|
|
type Output = T;
|
|
|
|
#[inline(always)]
|
|
|
|
fn index(&self, (i, j): (usize, usize)) -> &Self::Output {
|
|
|
|
&self.data[i][j]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const M: usize, const N: usize> core::ops::IndexMut<(usize, usize)> for Matrix<T, M, N> {
|
|
|
|
#[inline(always)]
|
|
|
|
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut Self::Output {
|
|
|
|
&mut self.data[i][j]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const M: usize, const N: usize> core::ops::Index<usize> for Matrix<T, M, N> {
|
|
|
|
type Output = [T; N];
|
|
|
|
#[inline(always)]
|
|
|
|
fn index(&self, i: usize) -> &Self::Output {
|
|
|
|
&self.data[i]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const M: usize, const N: usize> core::ops::IndexMut<usize> for Matrix<T, M, N> {
|
|
|
|
#[inline(always)]
|
|
|
|
fn index_mut(&mut self, i: usize) -> &mut Self::Output {
|
|
|
|
&mut self.data[i]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const M: usize, const N: usize> Matrix<T, M, N> {
|
|
|
|
pub const fn new(data: [[T; N]; M]) -> Self {
|
|
|
|
Self { data }
|
|
|
|
}
|
|
|
|
pub const fn nrows(&self) -> usize {
|
|
|
|
M
|
|
|
|
}
|
|
|
|
pub const fn ncols(&self) -> usize {
|
|
|
|
N
|
|
|
|
}
|
|
|
|
pub fn matmul<const P: usize>(&self, other: &Matrix<T, N, P>) -> Matrix<T, M, P>
|
|
|
|
where
|
|
|
|
T: Default + core::ops::AddAssign<T>,
|
|
|
|
for<'f> &'f T: std::ops::Mul<Output = T>,
|
|
|
|
{
|
|
|
|
let mut out = Matrix::default();
|
|
|
|
self.matmul_into(other, &mut out);
|
|
|
|
out
|
|
|
|
}
|
|
|
|
pub fn matmul_into<const P: usize>(
|
|
|
|
&self,
|
|
|
|
other: &Matrix<T, N, P>,
|
|
|
|
out: &mut Matrix<T, M, P>,
|
|
|
|
) where
|
|
|
|
T: Default + core::ops::AddAssign<T>,
|
|
|
|
for<'f> &'f T: std::ops::Mul<Output = T>,
|
|
|
|
{
|
|
|
|
*out = Default::default();
|
|
|
|
for i in 0..M {
|
|
|
|
for j in 0..P {
|
|
|
|
for k in 0..N {
|
|
|
|
out[(i, j)] += &self[(i, k)] * &other[(k, j)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-01-28 19:59:11 +00:00
|
|
|
pub fn iter(&self) -> impl ExactSizeIterator<Item = &T> + DoubleEndedIterator<Item = &T> {
|
|
|
|
(0..N * M).map(move |x| {
|
|
|
|
let i = x / N;
|
|
|
|
let j = x % N;
|
|
|
|
&self[(i, j)]
|
|
|
|
})
|
|
|
|
}
|
|
|
|
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
|
|
|
|
self.data.iter_mut().flatten()
|
|
|
|
}
|
2021-01-28 18:18:34 +00:00
|
|
|
pub fn iter_rows(
|
|
|
|
&self,
|
|
|
|
) -> impl ExactSizeIterator<Item = &[T; N]> + DoubleEndedIterator<Item = &[T; N]> {
|
|
|
|
(0..M).map(move |i| &self[i])
|
|
|
|
}
|
2021-01-28 19:59:11 +00:00
|
|
|
|
|
|
|
pub fn flip(&self) -> Self
|
|
|
|
where
|
|
|
|
T: Default + Clone,
|
|
|
|
{
|
|
|
|
let mut v = Self::default();
|
|
|
|
for i in 0..M {
|
|
|
|
for j in 0..N {
|
2021-01-28 20:27:25 +00:00
|
|
|
v[(i, j)] = self[(M - 1 - i, N - 1 - j)].clone()
|
2021-01-28 19:59:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
v
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const N: usize> ColVector<T, N> {
|
|
|
|
pub fn map_to_col(slice: &[T; N]) -> &ColVector<T, N> {
|
|
|
|
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
|
|
|
|
}
|
|
|
|
pub fn map_to_col_mut(slice: &mut [T; N]) -> &mut ColVector<T, N> {
|
|
|
|
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const N: usize> RowVector<T, N> {
|
|
|
|
pub fn map_to_row(slice: &[T; N]) -> &Self {
|
|
|
|
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
|
|
|
|
}
|
|
|
|
pub fn map_to_row_mut(slice: &mut [T; N]) -> &mut Self {
|
|
|
|
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, const M: usize, const N: usize> core::ops::MulAssign<&T> for Matrix<T, M, N>
|
|
|
|
where
|
|
|
|
for<'f> T: core::ops::MulAssign<&'f T>,
|
|
|
|
{
|
|
|
|
fn mul_assign(&mut self, other: &T) {
|
|
|
|
self.iter_mut().for_each(|x| *x *= other)
|
|
|
|
}
|
2021-01-28 18:18:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::{super::*, *};
|
|
|
|
#[test]
|
|
|
|
fn construct_copy_type() {
|
|
|
|
let _m0 = Matrix::<i32, 4, 3>::default();
|
|
|
|
let _m1: Matrix<u8, 8, 8> = Matrix::default();
|
|
|
|
|
|
|
|
let _m2 = Matrix::new([[1, 2], [3, 4]]);
|
|
|
|
}
|
|
|
|
#[test]
|
|
|
|
fn construct_non_copy() {
|
|
|
|
let _m = Matrix::<String, 2, 1>::default();
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn matmul() {
|
|
|
|
let m1 = Matrix::new([[1_u8, 2, 3], [4, 5, 6]]);
|
|
|
|
let m2 = Matrix::new([[7_u8, 8, 9, 10], [11, 12, 13, 14], [15, 16, 17, 18]]);
|
|
|
|
|
|
|
|
let m3 = m1.matmul(&m2);
|
|
|
|
assert_eq!(m3, Matrix::new([[74, 80, 86, 92], [173, 188, 203, 218]]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-28 19:59:11 +00:00
|
|
|
pub(crate) use constmatrix::{ColVector, Matrix, RowVector};
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_1d_matrix<const M: usize, const N: usize, const D: usize>(
|
|
|
|
block: &Matrix<Float, M, N>,
|
|
|
|
diag: &RowVector<Float, N>,
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView1<Float>,
|
|
|
|
mut fut: ArrayViewMut1<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[0];
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
assert!(nx >= N);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
for (bl, f) in block.iter_rows().zip(&mut fut) {
|
|
|
|
let diff = bl
|
|
|
|
.iter()
|
|
|
|
.zip(prev.iter())
|
|
|
|
.map(|(x, y)| x * y)
|
|
|
|
.sum::<Float>();
|
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The window needs to be aligned to the diagonal elements,
|
|
|
|
// based on the block size
|
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
|
|
|
|
for (window, f) in prev
|
|
|
|
.windows(D)
|
|
|
|
.into_iter()
|
|
|
|
.skip(window_elems_to_skip)
|
|
|
|
.zip(fut.iter_mut().skip(M))
|
|
|
|
.take(nx - 2 * M)
|
|
|
|
{
|
|
|
|
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
|
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (bl, f) in block.iter_rows().zip(fut.iter_mut().rev()) {
|
|
|
|
let diff = bl
|
|
|
|
.iter()
|
|
|
|
.zip(prev.iter().rev())
|
|
|
|
.map(|(x, y)| x * y)
|
|
|
|
.sum::<Float>();
|
|
|
|
|
|
|
|
*f = idx
|
|
|
|
* if symmetry == Symmetry::Symmetric {
|
|
|
|
diff
|
|
|
|
} else {
|
|
|
|
-diff
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_1d_slice_matrix<const M: usize, const N: usize, const D: usize>(
|
|
|
|
block: &Matrix<Float, M, N>,
|
|
|
|
diag: &RowVector<Float, D>,
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
prev: &[Float],
|
|
|
|
fut: &mut [Float],
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.len(), fut.len());
|
|
|
|
let nx = prev.len();
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
assert!(nx >= N);
|
|
|
|
let prev = &prev[..nx];
|
|
|
|
let fut = &mut fut[..nx];
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
use std::convert::TryInto;
|
|
|
|
{
|
|
|
|
let prev = ColVector::<_, N>::map_to_col((&prev[0..N]).try_into().unwrap());
|
|
|
|
let fut = ColVector::<_, M>::map_to_col_mut((&mut fut[0..M]).try_into().unwrap());
|
|
|
|
|
|
|
|
block.matmul_into(prev, fut);
|
|
|
|
*fut *= &idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The window needs to be aligned to the diagonal elements,
|
|
|
|
// based on the block size
|
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
|
|
|
|
for (window, f) in prev
|
|
|
|
.array_windows::<D>()
|
|
|
|
.skip(window_elems_to_skip)
|
2021-01-28 20:27:25 +00:00
|
|
|
.zip(fut.array_chunks_mut::<1>().skip(M))
|
2021-01-28 19:59:11 +00:00
|
|
|
.take(nx - 2 * M)
|
|
|
|
{
|
2021-01-28 20:27:25 +00:00
|
|
|
// impl From here?
|
|
|
|
let fut = ColVector::<Float, 1>::map_to_col_mut(f);
|
2021-01-28 19:59:11 +00:00
|
|
|
let prev = ColVector::<_, D>::map_to_col(window);
|
|
|
|
|
|
|
|
diag.matmul_into(prev, fut);
|
|
|
|
*fut *= &idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
let flipped = {
|
|
|
|
let mut flipped = block.flip();
|
|
|
|
if symmetry != Symmetry::Symmetric {
|
|
|
|
flipped *= &-1.0;
|
|
|
|
}
|
|
|
|
flipped
|
|
|
|
};
|
|
|
|
|
|
|
|
{
|
2021-01-28 20:27:25 +00:00
|
|
|
let prev = prev.array_windows::<N>().last().unwrap();
|
|
|
|
let prev = ColVector::<_, N>::map_to_col(prev);
|
2021-01-28 19:59:11 +00:00
|
|
|
let fut = ColVector::<_, M>::map_to_col_mut((&mut fut[nx - M..]).try_into().unwrap());
|
|
|
|
|
|
|
|
flipped.matmul_into(prev, fut);
|
|
|
|
*fut *= &idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-18 21:37:24 +00:00
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_1d(
|
|
|
|
block: &[&[Float]],
|
|
|
|
diag: &[Float],
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView1<Float>,
|
|
|
|
mut fut: ArrayViewMut1<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[0];
|
|
|
|
assert!(nx >= 2 * block.len());
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
for (bl, f) in block.iter().zip(&mut fut) {
|
|
|
|
let diff = bl
|
|
|
|
.iter()
|
|
|
|
.zip(prev.iter())
|
|
|
|
.map(|(x, y)| x * y)
|
|
|
|
.sum::<Float>();
|
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The window needs to be aligned to the diagonal elements,
|
|
|
|
// based on the block size
|
|
|
|
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
|
|
|
|
|
|
|
|
for (window, f) in prev
|
|
|
|
.windows(diag.len())
|
|
|
|
.into_iter()
|
|
|
|
.skip(window_elems_to_skip)
|
|
|
|
.zip(fut.iter_mut().skip(block.len()))
|
|
|
|
.take(nx - 2 * block.len())
|
|
|
|
{
|
|
|
|
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
|
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
|
|
|
|
let diff = bl
|
|
|
|
.iter()
|
|
|
|
.zip(prev.iter().rev())
|
|
|
|
.map(|(x, y)| x * y)
|
|
|
|
.sum::<Float>();
|
|
|
|
|
|
|
|
*f = idx
|
|
|
|
* if symmetry == Symmetry::Symmetric {
|
|
|
|
diff
|
|
|
|
} else {
|
|
|
|
-diff
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(PartialEq, Copy, Clone)]
|
|
|
|
pub(crate) enum Symmetry {
|
|
|
|
Symmetric,
|
|
|
|
AntiSymmetric,
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(PartialEq, Copy, Clone)]
|
|
|
|
pub(crate) enum OperatorType {
|
|
|
|
Normal,
|
|
|
|
H2,
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
#[allow(unused)]
|
|
|
|
pub(crate) fn diff_op_col_naive(
|
|
|
|
block: &'static [&'static [Float]],
|
|
|
|
diag: &'static [Float],
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
|
|
|
#[inline(always)]
|
|
|
|
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
assert!(nx >= 2 * block.len());
|
|
|
|
|
|
|
|
assert_eq!(prev.strides()[0], 1);
|
|
|
|
assert_eq!(fut.strides()[0], 1);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
fut.fill(0.0);
|
|
|
|
|
|
|
|
// First block
|
|
|
|
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1))) {
|
|
|
|
debug_assert_eq!(fut.len(), prev.shape()[0]);
|
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
|
|
|
debug_assert_eq!(prev.len(), fut.len());
|
|
|
|
fut.scaled_add(idx * bl, &prev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let half_diag_width = (diag.len() - 1) / 2;
|
|
|
|
assert!(half_diag_width <= block.len());
|
|
|
|
|
|
|
|
// Diagonal entries
|
|
|
|
for (ifut, mut fut) in fut
|
|
|
|
.axis_iter_mut(ndarray::Axis(1))
|
|
|
|
.enumerate()
|
|
|
|
.skip(block.len())
|
|
|
|
.take(nx - 2 * block.len())
|
|
|
|
{
|
|
|
|
for (id, &d) in diag.iter().enumerate() {
|
|
|
|
let offset = ifut - half_diag_width + id;
|
|
|
|
fut.scaled_add(idx * d, &prev.slice(ndarray::s![.., offset]))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// End block
|
|
|
|
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1)).rev()) {
|
|
|
|
fut.fill(0.0);
|
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1)).rev()) {
|
|
|
|
if symmetry == Symmetry::Symmetric {
|
|
|
|
fut.scaled_add(idx * bl, &prev);
|
|
|
|
} else {
|
|
|
|
fut.scaled_add(-idx * bl, &prev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_col(
|
|
|
|
block: &'static [&'static [Float]],
|
|
|
|
diag: &'static [Float],
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
|
|
|
diff_op_col_simd(block, diag, symmetry, optype)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_col_simd(
|
|
|
|
block: &'static [&'static [Float]],
|
|
|
|
diag: &'static [Float],
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
|
|
|
#[inline(always)]
|
|
|
|
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
assert!(nx >= 2 * block.len());
|
|
|
|
|
|
|
|
assert_eq!(prev.strides()[0], 1);
|
|
|
|
assert_eq!(fut.strides()[0], 1);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
#[cfg(not(feature = "f32"))]
|
|
|
|
type SimdT = packed_simd::f64x8;
|
|
|
|
#[cfg(feature = "f32")]
|
|
|
|
type SimdT = packed_simd::f32x16;
|
|
|
|
|
|
|
|
let ny = prev.shape()[0];
|
|
|
|
// How many elements that can be simdified
|
|
|
|
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
|
|
|
|
|
|
|
|
let half_diag_width = (diag.len() - 1) / 2;
|
|
|
|
assert!(half_diag_width <= block.len());
|
|
|
|
|
|
|
|
let fut_base_ptr = fut.as_mut_ptr();
|
|
|
|
let fut_stride = fut.strides()[1];
|
|
|
|
let fut_ptr = |j, i| {
|
|
|
|
debug_assert!(j < ny && i < nx);
|
|
|
|
unsafe { fut_base_ptr.offset(fut_stride * i as isize + j as isize) }
|
|
|
|
};
|
|
|
|
|
|
|
|
let prev_base_ptr = prev.as_ptr();
|
|
|
|
let prev_stride = prev.strides()[1];
|
|
|
|
let prev_ptr = |j, i| {
|
|
|
|
debug_assert!(j < ny && i < nx);
|
|
|
|
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
|
|
|
|
};
|
|
|
|
|
|
|
|
// Not algo necessary, but gives performance increase
|
|
|
|
assert_eq!(fut_stride, prev_stride);
|
|
|
|
|
|
|
|
// First block
|
|
|
|
{
|
|
|
|
for (ifut, &bl) in block.iter().enumerate() {
|
|
|
|
for j in (0..simdified).step_by(SimdT::lanes()) {
|
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (iprev, &bl) in bl.iter().enumerate() {
|
|
|
|
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
|
|
|
}
|
|
|
|
f *= idx;
|
|
|
|
|
|
|
|
unsafe {
|
|
|
|
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
|
|
|
fut_ptr(j, ifut),
|
|
|
|
SimdT::lanes(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for j in simdified..ny {
|
|
|
|
unsafe {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (iprev, bl) in bl.iter().enumerate() {
|
|
|
|
f += bl * *prev_ptr(j, iprev);
|
|
|
|
}
|
|
|
|
*fut_ptr(j, ifut) = f * idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Diagonal elements
|
|
|
|
{
|
|
|
|
for ifut in block.len()..nx - block.len() {
|
|
|
|
for j in (0..simdified).step_by(SimdT::lanes()) {
|
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (id, &d) in diag.iter().enumerate() {
|
|
|
|
let offset = ifut - half_diag_width + id;
|
|
|
|
f = index_to_simd(offset).mul_adde(SimdT::splat(d), f);
|
|
|
|
}
|
|
|
|
f *= idx;
|
|
|
|
unsafe {
|
|
|
|
// puts simd along stride 1, j never goes past end of slice
|
|
|
|
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
|
|
|
fut_ptr(j, ifut),
|
|
|
|
SimdT::lanes(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for j in simdified..ny {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (id, &d) in diag.iter().enumerate() {
|
|
|
|
let offset = ifut - half_diag_width + id;
|
|
|
|
unsafe {
|
|
|
|
f += d * *prev_ptr(j, offset);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
unsafe {
|
|
|
|
*fut_ptr(j, ifut) = idx * f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// End block
|
|
|
|
{
|
|
|
|
// Get blocks and corresponding offsets
|
|
|
|
// (rev to iterate in ifut increasing order)
|
|
|
|
for (bl, ifut) in block.iter().zip((0..nx).rev()) {
|
|
|
|
for j in (0..simdified).step_by(SimdT::lanes()) {
|
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (&bl, iprev) in bl.iter().zip((0..nx).rev()) {
|
|
|
|
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
|
|
|
}
|
|
|
|
f = if symmetry == Symmetry::Symmetric {
|
|
|
|
f * idx
|
|
|
|
} else {
|
|
|
|
-f * idx
|
|
|
|
};
|
|
|
|
unsafe {
|
|
|
|
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
|
|
|
fut_ptr(j, ifut),
|
|
|
|
SimdT::lanes(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for j in simdified..ny {
|
|
|
|
unsafe {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (&bl, iprev) in bl.iter().zip((0..nx).rev()).rev() {
|
|
|
|
f += bl * *prev_ptr(j, iprev);
|
|
|
|
}
|
|
|
|
*fut_ptr(j, ifut) = if symmetry == Symmetry::Symmetric {
|
|
|
|
f * idx
|
|
|
|
} else {
|
|
|
|
-f * idx
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
fn product_fast<'a>(
|
|
|
|
u: impl Iterator<Item = &'a Float>,
|
|
|
|
v: impl Iterator<Item = &'a Float>,
|
|
|
|
) -> Float {
|
|
|
|
use std::intrinsics::{fadd_fast, fmul_fast};
|
|
|
|
u.zip(v).fold(0.0, |acc, (&u, &v)| unsafe {
|
|
|
|
// We do not care about the order of multiplication nor addition
|
|
|
|
fadd_fast(acc, fmul_fast(u, v))
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_row(
|
|
|
|
block: &'static [&'static [Float]],
|
|
|
|
diag: &'static [Float],
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
|
|
|
|
#[inline(always)]
|
|
|
|
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
assert!(nx >= 2 * block.len());
|
|
|
|
|
|
|
|
assert_eq!(prev.strides()[1], 1);
|
|
|
|
assert_eq!(fut.strides()[1], 1);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
for (prev, mut fut) in prev
|
|
|
|
.axis_iter(ndarray::Axis(0))
|
|
|
|
.zip(fut.axis_iter_mut(ndarray::Axis(0)))
|
|
|
|
{
|
|
|
|
let prev = prev.as_slice().unwrap();
|
|
|
|
let fut = fut.as_slice_mut().unwrap();
|
|
|
|
assert_eq!(prev.len(), fut.len());
|
|
|
|
assert!(prev.len() >= 2 * block.len());
|
|
|
|
|
|
|
|
for (bl, f) in block.iter().zip(fut.iter_mut()) {
|
|
|
|
let diff = product_fast(bl.iter(), prev[..bl.len()].iter());
|
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The window needs to be aligned to the diagonal elements,
|
|
|
|
// based on the block size
|
|
|
|
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
|
|
|
|
|
|
|
|
for (window, f) in prev
|
|
|
|
.windows(diag.len())
|
|
|
|
.skip(window_elems_to_skip)
|
|
|
|
.zip(fut.iter_mut().skip(block.len()))
|
|
|
|
.take(nx - 2 * block.len())
|
|
|
|
{
|
|
|
|
let diff = product_fast(diag.iter(), window.iter());
|
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
|
|
|
|
let diff = product_fast(bl.iter(), prev.iter().rev());
|
|
|
|
|
|
|
|
*f = idx
|
|
|
|
* if symmetry == Symmetry::Symmetric {
|
|
|
|
diff
|
|
|
|
} else {
|
|
|
|
-diff
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "sparse")]
|
2021-01-25 19:53:56 +00:00
|
|
|
pub(crate) fn sparse_from_block(
|
2021-01-18 21:37:24 +00:00
|
|
|
block: &[&[Float]],
|
|
|
|
diag: &[Float],
|
|
|
|
symmetry: Symmetry,
|
|
|
|
optype: OperatorType,
|
|
|
|
n: usize,
|
|
|
|
) -> sprs::CsMat<Float> {
|
|
|
|
assert!(n >= 2 * block.len());
|
|
|
|
|
|
|
|
let nnz = {
|
|
|
|
let block_elems = block.iter().fold(0, |acc, x| {
|
|
|
|
acc + x
|
|
|
|
.iter()
|
|
|
|
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc })
|
|
|
|
});
|
|
|
|
|
|
|
|
let diag_elems = diag
|
|
|
|
.iter()
|
|
|
|
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
|
|
|
|
|
|
|
|
2 * block_elems + (n - 2 * block.len()) * diag_elems
|
|
|
|
};
|
|
|
|
|
|
|
|
let mut mat = sprs::TriMat::with_capacity((n, n), nnz);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (n - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (n - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
for (j, bl) in block.iter().enumerate() {
|
|
|
|
for (i, &b) in bl.iter().enumerate() {
|
|
|
|
if b == 0.0 {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
mat.add_triplet(j, i, b * idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for j in block.len()..n - block.len() {
|
|
|
|
let half_diag_len = diag.len() / 2;
|
|
|
|
for (&d, i) in diag.iter().zip(j - half_diag_len..) {
|
|
|
|
if d == 0.0 {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
mat.add_triplet(j, i, d * idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (bl, j) in block.iter().zip((0..n).rev()).rev() {
|
|
|
|
for (&b, i) in bl.iter().zip((0..n).rev()).rev() {
|
|
|
|
if b == 0.0 {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if symmetry == Symmetry::AntiSymmetric {
|
|
|
|
mat.add_triplet(j, i, -b * idx);
|
|
|
|
} else {
|
|
|
|
mat.add_triplet(j, i, b * idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mat.to_csr()
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "sparse")]
|
2021-01-25 19:53:56 +00:00
|
|
|
pub(crate) fn h_matrix(diag: &[Float], n: usize, is_h2: bool) -> sprs::CsMat<Float> {
|
2021-01-18 21:37:24 +00:00
|
|
|
let h = if is_h2 {
|
|
|
|
1.0 / (n - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (n - 1) as Float
|
|
|
|
};
|
|
|
|
let nmiddle = n - 2 * diag.len();
|
|
|
|
let iter = diag
|
|
|
|
.iter()
|
|
|
|
.chain(std::iter::repeat(&1.0).take(nmiddle))
|
|
|
|
.chain(diag.iter().rev())
|
|
|
|
.map(|&x| h * x);
|
|
|
|
|
|
|
|
let mut mat = sprs::TriMat::with_capacity((n, n), n);
|
|
|
|
for (i, d) in iter.enumerate() {
|
|
|
|
mat.add_triplet(i, i, d);
|
|
|
|
}
|
|
|
|
mat.to_csr()
|
|
|
|
}
|