SummationByParts/multigrid/src/main.rs

420 lines
13 KiB
Rust

use argh::FromArgs;
use rayon::prelude::*;
use euler::eval::Evaluator;
use sbp::operators::SbpOperator2d;
use sbp::*;
mod file;
mod input;
mod parsing;
use file::*;
mod eval;
struct System {
fnow: Vec<euler::Field>,
fnext: Vec<euler::Field>,
wb: Vec<euler::WorkBuffers>,
k: [Vec<euler::Diff>; 4],
grids: Vec<grid::Grid>,
metrics: Vec<grid::Metrics>,
bt: Vec<euler::BoundaryCharacteristics>,
eb: Vec<euler::BoundaryStorage>,
time: Float,
operators: Vec<Box<dyn SbpOperator2d>>,
}
use std::sync::atomic::{AtomicBool, Ordering};
pub(crate) static MULTITHREAD: AtomicBool = AtomicBool::new(false);
impl integrate::Integrable for System {
type State = Vec<euler::Field>;
type Diff = Vec<euler::Diff>;
fn assign(s: &mut Self::State, o: &Self::State) {
if MULTITHREAD.load(Ordering::Acquire) {
s.par_iter_mut()
.zip(o.par_iter())
.for_each(|(s, o)| euler::Field::assign(s, o))
} else {
s.iter_mut()
.zip(o.iter())
.for_each(|(s, o)| euler::Field::assign(s, o))
}
}
fn scaled_add(s: &mut Self::State, o: &Self::Diff, scale: Float) {
if MULTITHREAD.load(Ordering::Acquire) {
s.par_iter_mut()
.zip(o.par_iter())
.for_each(|(s, o)| euler::Field::scaled_add(s, o, scale))
} else {
s.iter_mut()
.zip(o.iter())
.for_each(|(s, o)| euler::Field::scaled_add(s, o, scale))
}
}
}
impl System {
fn new(
grids: Vec<grid::Grid>,
bt: Vec<euler::BoundaryCharacteristics>,
operators: Vec<Box<dyn SbpOperator2d>>,
) -> Self {
let fnow = grids
.iter()
.map(|g| euler::Field::new(g.ny(), g.nx()))
.collect::<Vec<_>>();
let fnext = fnow.clone();
let wb = grids
.iter()
.map(|g| euler::WorkBuffers::new(g.ny(), g.nx()))
.collect();
let k = grids
.iter()
.map(|g| euler::Diff::zeros((g.ny(), g.nx())))
.collect::<Vec<_>>();
let k = [k.clone(), k.clone(), k.clone(), k];
let metrics = grids
.iter()
.zip(&operators)
.map(|(g, op)| g.metrics(&**op).unwrap())
.collect::<Vec<_>>();
let eb = bt
.iter()
.zip(&grids)
.map(|(bt, grid)| euler::BoundaryStorage::new(bt, grid))
.collect();
Self {
fnow,
fnext,
k,
wb,
grids,
metrics,
bt,
eb,
time: 0.0,
operators,
}
}
fn vortex(&mut self, t: Float, vortex_params: &euler::VortexParameters) {
for (f, g) in self.fnow.iter_mut().zip(&self.grids) {
f.vortex(g.x(), g.y(), t, &vortex_params);
}
}
fn advance(&mut self, dt: Float) {
let metrics = &self.metrics;
let grids = &self.grids;
let bt = &self.bt;
let wb = &mut self.wb;
let eb = &mut self.eb;
let operators = &self.operators;
let rhs = move |fut: &mut Vec<euler::Diff>, prev: &Vec<euler::Field>, time: Float| {
let prev_all = &prev;
if MULTITHREAD.load(Ordering::Acquire) {
rayon::scope(|s| {
for (((((((fut, prev), wb), grid), metrics), op), bt), eb) in fut
.iter_mut()
.zip(prev.iter())
.zip(wb.iter_mut())
.zip(grids)
.zip(metrics.iter())
.zip(operators.iter())
.zip(bt.iter())
.zip(eb.iter_mut())
{
s.spawn(move |_| {
let bc = euler::boundary_extracts(prev_all, bt, prev, grid, eb, time);
if op.upwind().is_some() {
euler::RHS_upwind(&**op, fut, prev, metrics, &bc, &mut wb.0);
} else {
euler::RHS_trad(&**op, fut, prev, metrics, &bc, &mut wb.0);
}
})
}
});
} else {
for (((((((fut, prev), wb), grid), metrics), op), bt), eb) in fut
.iter_mut()
.zip(prev.iter())
.zip(wb.iter_mut())
.zip(grids)
.zip(metrics.iter())
.zip(operators.iter())
.zip(bt.iter())
.zip(eb.iter_mut())
{
let bc = euler::boundary_extracts(prev_all, bt, prev, grid, eb, time);
if op.upwind().is_some() {
euler::RHS_upwind(&**op, fut, prev, metrics, &bc, &mut wb.0);
} else {
euler::RHS_trad(&**op, fut, prev, metrics, &bc, &mut wb.0);
}
}
}
};
integrate::integrate::<integrate::Rk4, System, _>(
rhs,
&self.fnow,
&mut self.fnext,
&mut self.time,
dt,
&mut self.k,
);
std::mem::swap(&mut self.fnow, &mut self.fnext);
}
/// Suggested maximum dt for this problem
fn max_dt(&self) -> Float {
let is_h2 = self
.operators
.iter()
.any(|op| op.is_h2xi() || op.is_h2eta());
let c_max = if is_h2 { 0.5 } else { 1.0 };
let mut max_dt: Float = Float::INFINITY;
for (field, metrics) in self.fnow.iter().zip(self.metrics.iter()) {
let nx = field.nx();
let ny = field.ny();
let rho = field.rho();
let rhou = field.rhou();
let rhov = field.rhov();
let mut max_u: Float = 0.0;
let mut max_v: Float = 0.0;
for ((((((rho, rhou), rhov), detj_dxi_dx), detj_dxi_dy), detj_deta_dx), detj_deta_dy) in
rho.iter()
.zip(rhou.iter())
.zip(rhov.iter())
.zip(metrics.detj_dxi_dx())
.zip(metrics.detj_dxi_dy())
.zip(metrics.detj_deta_dx())
.zip(metrics.detj_deta_dy())
{
let u = rhou / rho;
let v = rhov / rho;
let uhat: Float = detj_dxi_dx * u + detj_dxi_dy * v;
let vhat: Float = detj_deta_dx * u + detj_deta_dy * v;
max_u = max_u.max(uhat.abs());
max_v = max_v.max(vhat.abs());
}
let dx = 1.0 / nx as Float;
let dy = 1.0 / ny as Float;
let c_dt = Float::max(max_u / dx, max_v / dy);
max_dt = Float::min(max_dt, c_max / c_dt);
}
max_dt
}
}
#[derive(Debug, FromArgs)]
/// Options for configuring and running the solver
struct CliOptions {
#[argh(positional)]
json: std::path::PathBuf,
/// number of simultaneous threads
#[argh(option, short = 'j')]
jobs: Option<usize>,
/// name of output file
#[argh(
option,
short = 'o',
default = "std::path::PathBuf::from(\"output.hdf\")"
)]
output: std::path::PathBuf,
/// number of outputs to save
#[argh(option, short = 'n')]
number_of_outputs: Option<u64>,
/// print the time to complete, taken in the compute loop
#[argh(switch)]
timings: bool,
/// print error at the end of the run
#[argh(switch)]
error: bool,
/// disable the progressbar
#[argh(switch)]
no_progressbar: bool,
/// output information regarding time elapsed and error
/// in json format
#[argh(switch)]
output_json: bool,
}
#[derive(Default, serde::Serialize)]
struct OutputInformation {
filename: std::path::PathBuf,
#[serde(skip_serializing_if = "Option::is_none")]
time_elapsed: Option<std::time::Duration>,
#[serde(skip_serializing_if = "Option::is_none")]
error: Option<Float>,
}
fn main() {
let opt: CliOptions = argh::from_env();
let filecontents = std::fs::read_to_string(&opt.json).unwrap();
let config: input::Configuration = match json5::from_str(&filecontents) {
Ok(config) => config,
Err(e) => {
eprintln!("Configuration could not be read: {}", e);
if let json5::Error::Message {
location: Some(location),
..
} = e
{
eprintln!("\t{:?}", location);
}
return;
}
};
let parsing::RuntimeConfiguration {
names,
grids,
grid_connections,
op: operators,
integration_time,
initial_conditions,
boundary_conditions: _,
} = config.into_runtime();
let mut sys = System::new(grids, grid_connections, operators);
match &initial_conditions {
/*
parsing::InitialConditions::File(f) => {
for grid in &sys.grids {
// Copy initial conditions from file, requires name of field
todo!()
}
}
*/
parsing::InitialConditions::Vortex(vortexparams) => sys.vortex(0.0, &vortexparams),
parsing::InitialConditions::Expressions(expr) => {
let t = 0.0;
for (grid, field) in sys.grids.iter().zip(sys.fnow.iter_mut()) {
// Evaluate the expressions on all variables
let x = grid.x();
let y = grid.y();
let (rho, rhou, rhov, e) = field.components_mut();
(*expr).evaluate(t, x, y, rho, rhou, rhov, e);
}
}
}
let dt = sys.max_dt();
let ntime = (integration_time / dt).round() as u64;
{
let nthreads = opt.jobs.unwrap_or(1);
if nthreads > 1 {
MULTITHREAD.store(true, Ordering::Release);
rayon::ThreadPoolBuilder::new()
.num_threads(nthreads)
.build_global()
.unwrap();
}
}
let should_output = |itime| {
opt.number_of_outputs.map_or(false, |num_out| {
if num_out == 0 {
false
} else {
itime % (std::cmp::max(ntime / (num_out - 1), 1)) == 0
}
})
};
let output = File::create(&opt.output, sys.grids.as_slice(), names).unwrap();
let mut output = OutputThread::new(output);
output.add_timestep(0, &sys.fnow);
let progressbar = progressbar(opt.no_progressbar, ntime);
let timer = if opt.timings {
Some(std::time::Instant::now())
} else {
None
};
for itime in 0..ntime {
if should_output(itime) {
output.add_timestep(itime, &sys.fnow);
}
progressbar.inc(1);
sys.advance(dt);
}
progressbar.finish_and_clear();
let mut outinfo = OutputInformation {
filename: opt.output,
..Default::default()
};
if let Some(timer) = timer {
let duration = timer.elapsed();
outinfo.time_elapsed = Some(duration);
}
output.add_timestep(ntime, &sys.fnow);
if opt.error {
let time = ntime as Float * dt;
let mut e = 0.0;
for ((fmod, grid), op) in sys.fnow.iter().zip(&sys.grids).zip(&sys.operators) {
let mut fvort = fmod.clone();
match &initial_conditions {
parsing::InitialConditions::Vortex(vortexparams) => {
fvort.vortex(grid.x(), grid.y(), time, &vortexparams);
}
parsing::InitialConditions::Expressions(expr) => {
let (rho, rhou, rhov, e) = fvort.components_mut();
expr.as_ref()
.evaluate(time, grid.x(), grid.y(), rho, rhou, rhov, e)
}
}
e += fmod.h2_err(&fvort, &**op);
}
outinfo.error = Some(e);
}
if opt.output_json {
println!("{}", json5::to_string(&outinfo).unwrap());
} else {
if let Some(duration) = outinfo.time_elapsed {
println!("Time elapsed: {} seconds", duration.as_secs_f64());
}
if let Some(error) = outinfo.error {
println!("Total error: {:e}", error);
}
}
}
fn progressbar(dummy: bool, ntime: u64) -> indicatif::ProgressBar {
if dummy {
indicatif::ProgressBar::hidden()
} else {
let progressbar = indicatif::ProgressBar::new(ntime);
progressbar.with_style(
indicatif::ProgressStyle::default_bar()
.template("{wide_bar:.cyan/blue} {pos}/{len} ({eta})"),
)
}
}