use argh::FromArgs; use rayon::prelude::*; use euler::eval::Evaluator; use sbp::operators::SbpOperator2d; use sbp::*; mod file; mod input; mod parsing; use file::*; mod eval; struct System { fnow: Vec, fnext: Vec, wb: Vec, k: [Vec; 4], grids: Vec, metrics: Vec, bt: Vec, eb: Vec, time: Float, operators: Vec>, } use std::sync::atomic::{AtomicBool, Ordering}; pub(crate) static MULTITHREAD: AtomicBool = AtomicBool::new(false); impl integrate::Integrable for System { type State = Vec; type Diff = Vec; fn assign(s: &mut Self::State, o: &Self::State) { if MULTITHREAD.load(Ordering::Acquire) { s.par_iter_mut() .zip(o.par_iter()) .for_each(|(s, o)| euler::Field::assign(s, o)) } else { s.iter_mut() .zip(o.iter()) .for_each(|(s, o)| euler::Field::assign(s, o)) } } fn scaled_add(s: &mut Self::State, o: &Self::Diff, scale: Float) { if MULTITHREAD.load(Ordering::Acquire) { s.par_iter_mut() .zip(o.par_iter()) .for_each(|(s, o)| euler::Field::scaled_add(s, o, scale)) } else { s.iter_mut() .zip(o.iter()) .for_each(|(s, o)| euler::Field::scaled_add(s, o, scale)) } } } impl System { fn new( grids: Vec, bt: Vec, operators: Vec>, ) -> Self { let fnow = grids .iter() .map(|g| euler::Field::new(g.ny(), g.nx())) .collect::>(); let fnext = fnow.clone(); let wb = grids .iter() .map(|g| euler::WorkBuffers::new(g.ny(), g.nx())) .collect(); let k = grids .iter() .map(|g| euler::Diff::zeros((g.ny(), g.nx()))) .collect::>(); let k = [k.clone(), k.clone(), k.clone(), k]; let metrics = grids .iter() .zip(&operators) .map(|(g, op)| g.metrics(&**op).unwrap()) .collect::>(); let eb = bt .iter() .zip(&grids) .map(|(bt, grid)| euler::BoundaryStorage::new(bt, grid)) .collect(); Self { fnow, fnext, k, wb, grids, metrics, bt, eb, time: 0.0, operators, } } fn vortex(&mut self, t: Float, vortex_params: &euler::VortexParameters) { for (f, g) in self.fnow.iter_mut().zip(&self.grids) { f.vortex(g.x(), g.y(), t, &vortex_params); } } fn advance(&mut self, dt: Float) { let metrics = &self.metrics; let grids = &self.grids; let bt = &self.bt; let wb = &mut self.wb; let eb = &mut self.eb; let operators = &self.operators; let rhs = move |fut: &mut Vec, prev: &Vec, time: Float| { let prev_all = &prev; if MULTITHREAD.load(Ordering::Acquire) { rayon::scope(|s| { for (((((((fut, prev), wb), grid), metrics), op), bt), eb) in fut .iter_mut() .zip(prev.iter()) .zip(wb.iter_mut()) .zip(grids) .zip(metrics.iter()) .zip(operators.iter()) .zip(bt.iter()) .zip(eb.iter_mut()) { s.spawn(move |_| { let bc = euler::boundary_extracts(prev_all, bt, prev, grid, eb, time); if op.upwind().is_some() { euler::RHS_upwind(&**op, fut, prev, metrics, &bc, &mut wb.0); } else { euler::RHS_trad(&**op, fut, prev, metrics, &bc, &mut wb.0); } }) } }); } else { for (((((((fut, prev), wb), grid), metrics), op), bt), eb) in fut .iter_mut() .zip(prev.iter()) .zip(wb.iter_mut()) .zip(grids) .zip(metrics.iter()) .zip(operators.iter()) .zip(bt.iter()) .zip(eb.iter_mut()) { let bc = euler::boundary_extracts(prev_all, bt, prev, grid, eb, time); if op.upwind().is_some() { euler::RHS_upwind(&**op, fut, prev, metrics, &bc, &mut wb.0); } else { euler::RHS_trad(&**op, fut, prev, metrics, &bc, &mut wb.0); } } } }; integrate::integrate::( rhs, &self.fnow, &mut self.fnext, &mut self.time, dt, &mut self.k, ); std::mem::swap(&mut self.fnow, &mut self.fnext); } /// Suggested maximum dt for this problem fn max_dt(&self) -> Float { let is_h2 = self .operators .iter() .any(|op| op.is_h2xi() || op.is_h2eta()); let c_max = if is_h2 { 0.5 } else { 1.0 }; let mut max_dt: Float = Float::INFINITY; for (field, metrics) in self.fnow.iter().zip(self.metrics.iter()) { let nx = field.nx(); let ny = field.ny(); let rho = field.rho(); let rhou = field.rhou(); let rhov = field.rhov(); let mut max_u: Float = 0.0; let mut max_v: Float = 0.0; for ((((((rho, rhou), rhov), detj_dxi_dx), detj_dxi_dy), detj_deta_dx), detj_deta_dy) in rho.iter() .zip(rhou.iter()) .zip(rhov.iter()) .zip(metrics.detj_dxi_dx()) .zip(metrics.detj_dxi_dy()) .zip(metrics.detj_deta_dx()) .zip(metrics.detj_deta_dy()) { let u = rhou / rho; let v = rhov / rho; let uhat: Float = detj_dxi_dx * u + detj_dxi_dy * v; let vhat: Float = detj_deta_dx * u + detj_deta_dy * v; max_u = max_u.max(uhat.abs()); max_v = max_v.max(vhat.abs()); } let dx = 1.0 / nx as Float; let dy = 1.0 / ny as Float; let c_dt = Float::max(max_u / dx, max_v / dy); max_dt = Float::min(max_dt, c_max / c_dt); } max_dt } } #[derive(Debug, FromArgs)] /// Options for configuring and running the solver struct CliOptions { #[argh(positional)] json: std::path::PathBuf, /// number of simultaneous threads #[argh(option, short = 'j')] jobs: Option, /// name of output file #[argh( option, short = 'o', default = "std::path::PathBuf::from(\"output.hdf\")" )] output: std::path::PathBuf, /// number of outputs to save #[argh(option, short = 'n')] number_of_outputs: Option, /// print the time to complete, taken in the compute loop #[argh(switch)] timings: bool, /// print error at the end of the run #[argh(switch)] error: bool, /// disable the progressbar #[argh(switch)] no_progressbar: bool, /// output information regarding time elapsed and error /// in json format #[argh(switch)] output_json: bool, } #[derive(Default, serde::Serialize)] struct OutputInformation { filename: std::path::PathBuf, #[serde(skip_serializing_if = "Option::is_none")] time_elapsed: Option, #[serde(skip_serializing_if = "Option::is_none")] error: Option, } fn main() { let opt: CliOptions = argh::from_env(); let filecontents = std::fs::read_to_string(&opt.json).unwrap(); let config: input::Configuration = match json5::from_str(&filecontents) { Ok(config) => config, Err(e) => { eprintln!("Configuration could not be read: {}", e); if let json5::Error::Message { location: Some(location), .. } = e { eprintln!("\t{:?}", location); } return; } }; let parsing::RuntimeConfiguration { names, grids, grid_connections, op: operators, integration_time, initial_conditions, boundary_conditions: _, } = config.into_runtime(); let mut sys = System::new(grids, grid_connections, operators); match &initial_conditions { /* parsing::InitialConditions::File(f) => { for grid in &sys.grids { // Copy initial conditions from file, requires name of field todo!() } } */ parsing::InitialConditions::Vortex(vortexparams) => sys.vortex(0.0, &vortexparams), parsing::InitialConditions::Expressions(expr) => { let t = 0.0; for (grid, field) in sys.grids.iter().zip(sys.fnow.iter_mut()) { // Evaluate the expressions on all variables let x = grid.x(); let y = grid.y(); let (rho, rhou, rhov, e) = field.components_mut(); (*expr).evaluate(t, x, y, rho, rhou, rhov, e); } } } let dt = sys.max_dt(); let ntime = (integration_time / dt).round() as u64; { let nthreads = opt.jobs.unwrap_or(1); if nthreads > 1 { MULTITHREAD.store(true, Ordering::Release); rayon::ThreadPoolBuilder::new() .num_threads(nthreads) .build_global() .unwrap(); } } let should_output = |itime| { opt.number_of_outputs.map_or(false, |num_out| { if num_out == 0 { false } else { itime % (std::cmp::max(ntime / (num_out - 1), 1)) == 0 } }) }; let output = File::create(&opt.output, sys.grids.as_slice(), names).unwrap(); let mut output = OutputThread::new(output); output.add_timestep(0, &sys.fnow); let progressbar = progressbar(opt.no_progressbar, ntime); let timer = if opt.timings { Some(std::time::Instant::now()) } else { None }; for itime in 0..ntime { if should_output(itime) { output.add_timestep(itime, &sys.fnow); } progressbar.inc(1); sys.advance(dt); } progressbar.finish_and_clear(); let mut outinfo = OutputInformation { filename: opt.output, ..Default::default() }; if let Some(timer) = timer { let duration = timer.elapsed(); outinfo.time_elapsed = Some(duration); } output.add_timestep(ntime, &sys.fnow); if opt.error { let time = ntime as Float * dt; let mut e = 0.0; for ((fmod, grid), op) in sys.fnow.iter().zip(&sys.grids).zip(&sys.operators) { let mut fvort = fmod.clone(); match &initial_conditions { parsing::InitialConditions::Vortex(vortexparams) => { fvort.vortex(grid.x(), grid.y(), time, &vortexparams); } parsing::InitialConditions::Expressions(expr) => { let (rho, rhou, rhov, e) = fvort.components_mut(); expr.as_ref() .evaluate(time, grid.x(), grid.y(), rho, rhou, rhov, e) } } e += fmod.h2_err(&fvort, &**op); } outinfo.error = Some(e); } if opt.output_json { println!("{}", json5::to_string(&outinfo).unwrap()); } else { if let Some(duration) = outinfo.time_elapsed { println!("Time elapsed: {} seconds", duration.as_secs_f64()); } if let Some(error) = outinfo.error { println!("Total error: {:e}", error); } } } fn progressbar(dummy: bool, ntime: u64) -> indicatif::ProgressBar { if dummy { indicatif::ProgressBar::hidden() } else { let progressbar = indicatif::ProgressBar::new(ntime); progressbar.with_style( indicatif::ProgressStyle::default_bar() .template("{wide_bar:.cyan/blue} {pos}/{len} ({eta})"), ) } }