upwind operators

This commit is contained in:
Magnus Ulimoen 2019-12-12 20:32:38 +01:00
parent a26befec3a
commit dd3e7cfb31
5 changed files with 468 additions and 4 deletions

View File

@ -243,8 +243,8 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
universe.advance(dt/2);
universe.advance(dt/2);
universe.advance_upwind(dt/2);
universe.advance_upwind(dt/2);
window.requestAnimationFrame(drawMe);
}

View File

@ -47,6 +47,18 @@ impl Universe {
self.sys.0.set_gaussian(x0, y0);
}
/// Using artifical dissipation with the upwind operator
pub fn advance_upwind(&mut self, dt: f32) {
Field::advance_upwind::<operators::Upwind4>(
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
Some(&mut self.wb),
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
pub fn advance(&mut self, dt: f32) {
Field::advance::<operators::Upwind4>(
&self.sys.0,

View File

@ -1,4 +1,4 @@
use super::operators::SbpOperator;
use super::operators::{SbpOperator, UpwindOperator};
use super::Grid;
use ndarray::prelude::*;
use ndarray::{azip, Zip};
@ -97,6 +97,62 @@ impl Field {
}
}
pub(crate) fn advance_upwind<UO>(
&self,
fut: &mut Self,
dt: f32,
grid: &Grid<UO>,
work_buffers: Option<&mut WorkBuffers>,
) where
UO: UpwindOperator,
{
assert_eq!(self.0.shape(), fut.0.shape());
let mut wb: WorkBuffers;
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
} else {
wb = WorkBuffers::new(self.nx(), self.ny());
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
};
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
for i in 0..4 {
// y = y0 + c*kn
y.assign(&self);
match i {
0 => {}
1 | 2 => {
y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]);
}
3 => {
y.scaled_add(dt, &k[i - 1]);
}
_ => {
unreachable!();
}
};
RHS_upwind(&mut k[i], &y, grid, &boundaries, tmp);
}
Zip::from(&mut fut.0)
.and(&self.0)
.and(&*k[0])
.and(&*k[1])
.and(&*k[2])
.and(&*k[3])
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
}
/// Solving (Au)_x + (Bu)_y
/// with:
/// A B
@ -186,6 +242,25 @@ fn RHS<SBP: SbpOperator>(
});
}
#[allow(non_snake_case)]
fn RHS_upwind<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
boundaries: &BoundaryTerms,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
fluxes(k, y, grid, tmp);
dissipation(k, y, grid, tmp);
SAT_characteristics(k, y, grid, boundaries);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
*k /= detj;
});
}
fn fluxes<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
@ -260,6 +335,92 @@ fn fluxes<SBP: SbpOperator>(
}
}
fn dissipation<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
// ex component
{
ndarray::azip!((a in &mut tmp.0,
&kx in &grid.detj_dxi_dx,
&ky in &grid.detj_dxi_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*a = ky*ky/r * ex + -kx*ky/r*ey;
});
UO::dissxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&kx in &grid.detj_deta_dx,
&ky in &grid.detj_deta_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*b = ky*ky/r * ex + -kx*ky/r*ey;
});
UO::disseta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.ex_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux += ax + by
);
}
// hz component
{
ndarray::azip!((a in &mut tmp.0,
&kx in &grid.detj_dxi_dx,
&ky in &grid.detj_dxi_dy,
&hz in &y.hz()) {
let r = f32::hypot(kx, ky);
*a = r * hz;
});
UO::dissxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&kx in &grid.detj_deta_dx,
&ky in &grid.detj_deta_dy,
&hz in &y.hz()) {
let r = f32::hypot(kx, ky);
*b = r * hz;
});
UO::disseta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux += ax + by
);
}
// ey
{
ndarray::azip!((a in &mut tmp.0,
&kx in &grid.detj_dxi_dx,
&ky in &grid.detj_dxi_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*a = -kx*ky/r * ex + kx*kx/r*ey;
});
UO::dissxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&kx in &grid.detj_deta_dx,
&ky in &grid.detj_deta_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*b = -kx*ky/r * ex + kx*kx/r*ey;
});
UO::disseta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux += ax + by
);
}
}
#[derive(Clone, Debug)]
pub enum Boundary {
This,

View File

@ -6,5 +6,10 @@ pub trait SbpOperator {
fn h() -> &'static [f32];
}
pub trait UpwindOperator: SbpOperator {
fn dissxi(prev: ArrayView2<f32>, fut: ArrayViewMut2<f32>);
fn disseta(prev: ArrayView2<f32>, fut: ArrayViewMut2<f32>);
}
mod upwind4;
pub use upwind4::Upwind4;

View File

@ -1,4 +1,4 @@
use super::SbpOperator;
use super::{SbpOperator, UpwindOperator};
use ndarray::{arr1, arr2, s, ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2};
/// Simdtype used in diffeta_simd
@ -23,6 +23,55 @@ impl Upwind4 {
[ 3.0 / 298.0, 16.0 / 149.0, -227.0 / 298.0, 0.0, 126.0 / 149.0, -36.0 / 149.0, 6.0 / 149.0],
];
const DISS_BLOCK: [[f32; 7]; 4] = [
[
-3.0 / 49.0,
9.0 / 49.0,
-9.0 / 49.0,
3.0 / 49.0,
0.0,
0.0,
0.0,
],
[
3.0 / 61.0,
-11.0 / 61.0,
15.0 / 61.0,
-9.0 / 61.0,
2.0 / 61.0,
0.0,
0.0,
],
[
-3.0 / 41.0,
15.0 / 41.0,
-29.0 / 41.0,
27.0 / 41.0,
-12.0 / 41.0,
2.0 / 41.0,
0.0,
],
[
3.0 / 149.0,
-27.0 / 149.0,
81.0 / 149.0,
-117.0 / 149.0,
90.0 / 149.0,
-36.0 / 149.0,
6.0 / 149.0,
],
];
const DISS_DIAG: [f32; 7] = [
1.0 / 24.0,
-1.0 / 4.0,
5.0 / 8.0,
-5.0 / 6.0,
5.0 / 8.0,
-1.0 / 4.0,
1.0 / 24.0,
];
#[inline(never)]
fn diff_simd(prev: &[f32], fut: &mut [f32]) {
use packed_simd::{f32x8, u32x8};
@ -235,6 +284,218 @@ impl Upwind4 {
*f = diff * idx;
}
}
#[inline(never)]
fn diss_simd(prev: &[f32], fut: &mut [f32]) {
use packed_simd::{f32x8, u32x8};
assert_eq!(prev.len(), fut.len());
assert!(prev.len() >= 2 * Self::DISS_BLOCK.len());
let nx = prev.len();
let dx = 1.0 / (nx - 1) as f32;
let idx = 1.0 / dx;
let first_elems = unsafe { f32x8::from_slice_unaligned_unchecked(prev) };
let block = [
f32x8::new(
Self::DISS_BLOCK[0][0],
Self::DISS_BLOCK[0][1],
Self::DISS_BLOCK[0][2],
Self::DISS_BLOCK[0][3],
Self::DISS_BLOCK[0][4],
Self::DISS_BLOCK[0][5],
Self::DISS_BLOCK[0][6],
0.0,
),
f32x8::new(
Self::DISS_BLOCK[1][0],
Self::DISS_BLOCK[1][1],
Self::DISS_BLOCK[1][2],
Self::DISS_BLOCK[1][3],
Self::DISS_BLOCK[1][4],
Self::DISS_BLOCK[1][5],
Self::DISS_BLOCK[1][6],
0.0,
),
f32x8::new(
Self::DISS_BLOCK[2][0],
Self::DISS_BLOCK[2][1],
Self::DISS_BLOCK[2][2],
Self::DISS_BLOCK[2][3],
Self::DISS_BLOCK[2][4],
Self::DISS_BLOCK[2][5],
Self::DISS_BLOCK[2][6],
0.0,
),
f32x8::new(
Self::DISS_BLOCK[3][0],
Self::DISS_BLOCK[3][1],
Self::DISS_BLOCK[3][2],
Self::DISS_BLOCK[3][3],
Self::DISS_BLOCK[3][4],
Self::DISS_BLOCK[3][5],
Self::DISS_BLOCK[3][6],
0.0,
),
];
unsafe {
*fut.get_unchecked_mut(0) = idx * (block[0] * first_elems).sum();
*fut.get_unchecked_mut(1) = idx * (block[1] * first_elems).sum();
*fut.get_unchecked_mut(2) = idx * (block[2] * first_elems).sum();
*fut.get_unchecked_mut(3) = idx * (block[3] * first_elems).sum()
};
let diag = f32x8::new(
Self::DISS_DIAG[0],
Self::DISS_DIAG[1],
Self::DISS_DIAG[2],
Self::DISS_DIAG[3],
Self::DISS_DIAG[4],
Self::DISS_DIAG[5],
Self::DISS_DIAG[6],
0.0,
);
for (f, p) in fut
.iter_mut()
.skip(block.len())
.zip(
prev.windows(f32x8::lanes())
.map(f32x8::from_slice_unaligned)
.skip(1),
)
.take(nx - 2 * block.len())
{
*f = idx * (p * diag).sum();
}
let last_elems = unsafe { f32x8::from_slice_unaligned_unchecked(&prev[nx - 8..]) }
.shuffle1_dyn(u32x8::new(7, 6, 5, 4, 3, 2, 1, 0));
unsafe {
*fut.get_unchecked_mut(nx - 4) = idx * (block[3] * last_elems).sum();
*fut.get_unchecked_mut(nx - 3) = idx * (block[2] * last_elems).sum();
*fut.get_unchecked_mut(nx - 2) = idx * (block[1] * last_elems).sum();
*fut.get_unchecked_mut(nx - 1) = idx * (block[0] * last_elems).sum();
}
}
#[inline(never)]
fn disseta_simd(prev: &[f32], fut: &mut [f32], nx: usize, ny: usize) {
assert!(ny >= 2 * Self::DISS_BLOCK.len());
assert!(nx >= SimdT::lanes());
assert!(nx % SimdT::lanes() == 0);
assert_eq!(prev.len(), fut.len());
assert_eq!(prev.len(), nx * ny);
let dy = 1.0 / (ny - 1) as f32;
let idy = 1.0 / dy;
for j in (0..nx).step_by(SimdT::lanes()) {
let a = [
SimdT::from_slice_unaligned(&prev[0 * nx + j..]),
SimdT::from_slice_unaligned(&prev[1 * nx + j..]),
SimdT::from_slice_unaligned(&prev[2 * nx + j..]),
SimdT::from_slice_unaligned(&prev[3 * nx + j..]),
SimdT::from_slice_unaligned(&prev[4 * nx + j..]),
SimdT::from_slice_unaligned(&prev[5 * nx + j..]),
SimdT::from_slice_unaligned(&prev[6 * nx + j..]),
];
for (i, bl) in Self::DISS_BLOCK.iter().enumerate() {
let b = idy
* (a[0] * bl[0]
+ a[1] * bl[1]
+ a[2] * bl[2]
+ a[3] * bl[3]
+ a[4] * bl[4]
+ a[5] * bl[5]
+ a[6] * bl[6]);
b.write_to_slice_unaligned(&mut fut[i * nx + j..]);
}
let mut a = a;
for i in Self::DISS_BLOCK.len()..ny - Self::DISS_BLOCK.len() {
// Push a onto circular buffer
a = [
a[1],
a[2],
a[3],
a[4],
a[5],
a[6],
SimdT::from_slice_unaligned(&prev[nx * (i + 3) + j..]),
];
let b = idy
* (a[0] * Self::DISS_DIAG[0]
+ a[1] * Self::DISS_DIAG[1]
+ a[2] * Self::DISS_DIAG[2]
+ a[3] * Self::DISS_DIAG[3]
+ a[4] * Self::DISS_DIAG[4]
+ a[5] * Self::DISS_DIAG[5]
+ a[6] * Self::DISS_DIAG[6]);
b.write_to_slice_unaligned(&mut fut[nx * i + j..]);
}
let a = [
SimdT::from_slice_unaligned(&prev[(ny - 1) * nx + j..]),
SimdT::from_slice_unaligned(&prev[(ny - 2) * nx + j..]),
SimdT::from_slice_unaligned(&prev[(ny - 3) * nx + j..]),
SimdT::from_slice_unaligned(&prev[(ny - 4) * nx + j..]),
SimdT::from_slice_unaligned(&prev[(ny - 5) * nx + j..]),
SimdT::from_slice_unaligned(&prev[(ny - 6) * nx + j..]),
SimdT::from_slice_unaligned(&prev[(ny - 7) * nx + j..]),
];
for (i, bl) in Self::DISS_BLOCK.iter().enumerate() {
let b = idy
* (a[0] * bl[0]
+ a[1] * bl[1]
+ a[2] * bl[2]
+ a[3] * bl[3]
+ a[4] * bl[4]
+ a[5] * bl[5]
+ a[6] * bl[6]);
b.write_to_slice_unaligned(&mut fut[(ny - 1 - i) * nx + j..]);
}
}
}
fn diss(prev: ArrayView1<f32>, mut fut: ArrayViewMut1<f32>) {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[0];
assert!(nx >= 2 * Self::DISS_BLOCK.len());
if let (Some(p), Some(f)) = (prev.as_slice(), fut.as_slice_mut()) {
Self::diss_simd(p, f);
return;
}
let dx = 1.0 / (nx - 1) as f32;
let idx = 1.0 / dx;
let diag = arr1(&Self::DISS_DIAG);
let block = arr2(&Self::DISS_BLOCK);
let first_elems = prev.slice(s!(..7));
for (bl, f) in block.outer_iter().zip(&mut fut) {
let diff = first_elems.dot(&bl);
*f = diff * idx;
}
for (window, f) in prev
.windows(diag.len())
.into_iter()
.skip(1)
.zip(fut.iter_mut().skip(4))
.take(nx - 8)
{
let diff = diag.dot(&window);
*f = diff * idx;
}
let last_elems = prev.slice(s!(nx - 7..;-1));
for (bl, f) in block.outer_iter().zip(&mut fut.slice_mut(s![nx - 4..;-1])) {
let diff = bl.dot(&last_elems);
*f = diff * idx;
}
}
}
impl SbpOperator for Upwind4 {
@ -353,3 +614,28 @@ fn upwind4_test() {
approx::assert_abs_diff_eq!(&res.to_owned(), &target.to_owned(), epsilon = 1e-2);
}
}
impl UpwindOperator for Upwind4 {
fn dissxi(prev: ArrayView2<f32>, mut fut: ArrayViewMut2<f32>) {
assert_eq!(prev.shape(), fut.shape());
assert!(prev.shape()[1] >= 2 * Self::DISS_BLOCK.len());
for (r0, r1) in prev.outer_iter().zip(fut.outer_iter_mut()) {
Self::diss(r0, r1)
}
}
fn disseta(prev: ArrayView2<f32>, mut fut: ArrayViewMut2<f32>) {
assert_eq!(prev.shape(), fut.shape());
assert!(prev.shape()[0] >= 2 * Self::DISS_BLOCK.len());
let nx = prev.shape()[1];
let ny = prev.shape()[0];
if nx >= SimdT::lanes() && nx % SimdT::lanes() == 0 {
if let (Some(p), Some(f)) = (prev.as_slice(), fut.as_slice_mut()) {
Self::disseta_simd(p, f, nx, ny);
return;
}
}
// diffeta = transpose then use diffxi
Self::dissxi(prev.reversed_axes(), fut.reversed_axes());
}
}