checkpoint

This commit is contained in:
Magnus Ulimoen 2020-01-25 20:40:55 +01:00
parent 0646bdbee2
commit 4673fbfbf7
4 changed files with 758 additions and 17 deletions

30
main.js
View File

@ -1,4 +1,4 @@
import { Universe, default as init, set_panic_hook as setPanicHook } from "./maxwell.js";
import { EulerUniverse, Universe, default as init, set_panic_hook as setPanicHook } from "./maxwell.js";
/**
* Initialises and runs the Maxwell solver,
@ -49,7 +49,7 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
if (uChosenField == 0) {
r = vField + 0.5;
} else if (uChosenField == 1) {
g = (vField + 1.0)/2.0;
g = 2.5*(vField - 1.0) + 0.5;
} else {
b = vField + 0.5;
}
@ -103,8 +103,8 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
for (let j = 0; j < height; j += 1) {
for (let i = 0; i < width; i += 1) {
const n = width*j + i;
x[n] = i / (width - 1.0);
y[n] = j / (height - 1.0);
x[n] = 10.0*(i / (width - 1.0) - 0.5);
y[n] = 20.0*(j / (height - 1.0));
if (DIAMOND) {
@ -116,7 +116,7 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
}
}
const universe = new Universe(width, height, x, y);
const universe = new EulerUniverse(height, width, x, y);
// Transfer x, y to cpu, prepare fBuffer
@ -201,7 +201,7 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
};
chosenField.cycle();
universe.init(0.5, 0.5);
universe.init(0, 10);
/**
* Integrates and draws the next iteration
@ -227,14 +227,18 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
let fieldPtr;
if (chosenField.value === 0) {
fieldPtr = universe.get_ex_ptr();
fieldPtr = universe.get_rho_ptr();
} else if (chosenField.value === 1) {
fieldPtr = universe.get_hz_ptr();
fieldPtr = universe.get_rhou_ptr();
} else if (chosenField.value == 2) {
fieldPtr = universe.get_rhov_ptr();
} else {
fieldPtr = universe.get_ey_ptr();
}
fieldPtr = universe.get_e_ptr();
};
const field = new Float32Array(wasm.memory.buffer, fieldPtr, width*height);
gl.bufferData(gl.ARRAY_BUFFER, field, gl.DYNAMIC_DRAW);
console.log(field.reduce((min, v) => v < min ? v : min));
console.log(field.reduce((max, v) => v > max ? v : max));
{
const offset = 0;
@ -243,8 +247,8 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
universe.advance_upwind(dt/2);
universe.advance_upwind(dt/2);
universe.advance(dt/2);
universe.advance(dt/2);
window.requestAnimationFrame(drawMe);
}
@ -267,7 +271,7 @@ import { Universe, default as init, set_panic_hook as setPanicHook } from "./max
// Must adjust for bbox and transformations for x/y
const mousex = event.clientX / window.innerWidth;
const mousey = event.clientY / window.innerHeight;
universe.init(mousex, 1.0 - mousey);
universe.init(10*(mousex-0.5), 20.0*(1.0 - mousey));
}, {"passive": true});
resizeCanvas();

589
src/euler.rs Normal file
View File

@ -0,0 +1,589 @@
use super::operators::{SbpOperator, UpwindOperator};
use super::Grid;
use ndarray::prelude::*;
use ndarray::{azip, Zip};
pub const GAMMA: f32 = 1.4;
#[derive(Clone, Debug)]
/// A 4 x ny x nx array
pub struct Field(pub(crate) Array3<f32>);
impl std::ops::Deref for Field {
type Target = Array3<f32>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for Field {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl Field {
pub fn new(ny: usize, nx: usize) -> Self {
let field = Array3::zeros((4, ny, nx));
Self(field)
}
pub fn nx(&self) -> usize {
self.0.shape()[2]
}
pub fn ny(&self) -> usize {
self.0.shape()[1]
}
pub fn rho(&self) -> ArrayView2<f32> {
self.slice(s![0, .., ..])
}
pub fn rhou(&self) -> ArrayView2<f32> {
self.slice(s![1, .., ..])
}
pub fn rhov(&self) -> ArrayView2<f32> {
self.slice(s![2, .., ..])
}
pub fn e(&self) -> ArrayView2<f32> {
self.slice(s![3, .., ..])
}
pub fn rho_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![0, .., ..])
}
pub fn rhou_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![1, .., ..])
}
pub fn rhov_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![2, .., ..])
}
pub fn e_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![3, .., ..])
}
#[allow(unused)]
pub fn components(
&self,
) -> (
ArrayView2<f32>,
ArrayView2<f32>,
ArrayView2<f32>,
ArrayView2<f32>,
) {
(self.rho(), self.rhou(), self.rhov(), self.e())
}
#[allow(unused)]
pub fn components_mut(
&mut self,
) -> (
ArrayViewMut2<f32>,
ArrayViewMut2<f32>,
ArrayViewMut2<f32>,
ArrayViewMut2<f32>,
) {
let mut iter = self.0.outer_iter_mut();
let rho = iter.next().unwrap();
let rhou = iter.next().unwrap();
let rhov = iter.next().unwrap();
let e = iter.next().unwrap();
assert_eq!(iter.next(), None);
(rho, rhou, rhov, e)
}
fn north(&self) -> ArrayView2<f32> {
self.slice(s![.., self.ny() - 1, ..])
}
fn south(&self) -> ArrayView2<f32> {
self.slice(s![.., 0, ..])
}
fn east(&self) -> ArrayView2<f32> {
self.slice(s![.., .., self.nx() - 1])
}
fn west(&self) -> ArrayView2<f32> {
self.slice(s![.., .., 0])
}
fn north_mut(&mut self) -> ArrayViewMut2<f32> {
let ny = self.ny();
self.slice_mut(s![.., ny - 1, ..])
}
fn south_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![.., 0, ..])
}
fn east_mut(&mut self) -> ArrayViewMut2<f32> {
let nx = self.nx();
self.slice_mut(s![.., .., nx - 1])
}
fn west_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![.., .., 0])
}
}
#[allow(unused)]
pub(crate) fn advance_upwind<UO>(
prev: &Field,
fut: &mut Field,
dt: f32,
grid: &Grid<UO>,
work_buffers: Option<&mut WorkBuffers>,
) where
UO: UpwindOperator,
{
assert_eq!(prev.0.shape(), fut.0.shape());
let mut wb: WorkBuffers;
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
} else {
wb = WorkBuffers::new(prev.nx(), prev.ny());
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
};
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
for i in 0..4 {
// y = y0 + c*kn
y.assign(&prev);
match i {
0 => {}
1 | 2 => {
y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]);
}
3 => {
y.scaled_add(dt, &k[i - 1]);
}
_ => {
unreachable!();
}
};
RHS_upwind(&mut k[i], &y, grid, &boundaries, tmp);
}
Zip::from(&mut fut.0)
.and(&prev.0)
.and(&*k[0])
.and(&*k[1])
.and(&*k[2])
.and(&*k[3])
.apply(|y1, &y0, &k1, &k2, &k3, &k4| *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4));
}
/// Solving (Au)_x + (Bu)_y
/// with:
/// A B
/// [ 0, 0, 0] [ 0, 1, 0]
/// [ 0, 0, -1] [ 1, 0, 0]
/// [ 0, -1, 0] [ 0, 0, 0]
pub(crate) fn advance<SBP>(
prev: &Field,
fut: &mut Field,
dt: f32,
grid: &Grid<SBP>,
work_buffers: Option<&mut WorkBuffers>,
) where
SBP: SbpOperator,
{
assert_eq!(prev.0.shape(), fut.0.shape());
let mut wb: WorkBuffers;
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
} else {
wb = WorkBuffers::new(prev.nx(), prev.ny());
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
};
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
for i in 0..4 {
// y = y0 + c*kn
y.assign(&prev);
match i {
0 => {}
1 | 2 => {
y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]);
}
3 => {
y.scaled_add(dt, &k[i - 1]);
}
_ => {
unreachable!();
}
};
RHS(&mut k[i], &y, grid, &boundaries, tmp);
}
Zip::from(&mut fut.0)
.and(&prev.0)
.and(&*k[0])
.and(&*k[1])
.and(&*k[2])
.and(&*k[3])
.apply(|y1, &y0, &k1, &k2, &k3, &k4| *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4));
}
fn pressure(gamma: f32, rho: f32, rhou: f32, rhov: f32, e: f32) -> f32 {
(gamma - 1.0) * (e - (rhou * rhou + rhov * rhov) / (2.0 * rho))
}
#[allow(non_snake_case)]
/// This flux is rotated by the grid metrics
/// (Au)_x + (Bu)_y = 1/J [
/// (J xi_x Au)_xi + (J eta_x Au)_eta
/// (J xi_y Bu)_xi + (J eta_y Bu)_eta
/// ]
/// where J is the grid determinant
///
/// This is used both in fluxes and SAT terms
fn RHS<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
boundaries: &BoundaryTerms,
tmp: &mut (Field, Field, Field, Field),
) {
let ehat = &mut tmp.0;
let fhat = &mut tmp.1;
fluxes([ehat, fhat], y, grid);
let de = &mut tmp.2;
let df = &mut tmp.3;
SBP::diffxi(ehat.rho(), de.rho_mut());
SBP::diffxi(ehat.rhou(), de.rhou_mut());
SBP::diffxi(ehat.rhov(), de.rhov_mut());
SBP::diffxi(ehat.e(), de.e_mut());
SBP::diffeta(fhat.rho(), df.rho_mut());
SBP::diffeta(fhat.rhou(), df.rhou_mut());
SBP::diffeta(fhat.rhov(), df.rhov_mut());
SBP::diffeta(fhat.e(), df.e_mut());
// And dissipation...
ndarray::azip!((out in &mut k.0,
eflux in &de.0,
fflux in &df.0,
detj in &grid.detj.broadcast((4, y.ny(), y.nx())).unwrap()) {
*out = (-eflux - fflux)/detj
});
SAT_characteristics(k, y, grid, boundaries);
}
#[allow(non_snake_case)]
#[allow(unused)]
fn RHS_upwind<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
boundaries: &BoundaryTerms,
tmp: &mut (Field, Field, Field, Field),
) {
// fluxes(k, y, grid, tmp);
// dissipation(k, y, grid, tmp);
SAT_characteristics(k, y, grid, boundaries);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
*k /= detj;
});
}
fn fluxes<SBP: SbpOperator>(k: [&mut Field; 2], y: &Field, grid: &Grid<SBP>) {
let j_dxi_dx = grid.detj_dxi_dx.view();
let j_dxi_dy = grid.detj_dxi_dy.view();
let j_deta_dx = grid.detj_deta_dx.view();
let j_deta_dy = grid.detj_deta_dy.view();
let rho = y.rho();
let rhou = y.rhou();
let rhov = y.rhov();
let e = y.e();
for j in 0..y.ny() {
for i in 0..y.nx() {
let rho = rho[(j, i)];
let rhou = rhou[(j, i)];
let rhov = rhov[(j, i)];
let e = e[(j, i)];
let p = pressure(GAMMA, rho, rhou, rhov, e);
let ef = [
rhou,
rhou * rhou / rho + p,
rhou * rhov / rho,
rhou * (e + p) / rho,
];
let ff = [
rhov,
rhou * rhov / rho,
rhov * rhov / rho + p,
rhov * (e + p) / rho,
];
for comp in 0..4 {
let eflux = j_dxi_dx[(j, i)] * ef[comp] + j_dxi_dy[(j, i)] * ff[comp];
let fflux = j_deta_dx[(j, i)] * ef[comp] + j_deta_dy[(j, i)] * ff[comp];
k[0][(comp, j, i)] = eflux;
k[1][(comp, j, i)] = fflux;
}
}
}
}
#[allow(unused)]
fn dissipation<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
todo!()
}
#[derive(Clone, Debug)]
pub enum Boundary {
This,
}
#[derive(Clone, Debug)]
pub struct BoundaryTerms {
pub north: Boundary,
pub south: Boundary,
pub east: Boundary,
pub west: Boundary,
}
#[allow(non_snake_case)]
/// Boundary conditions (SAT)
fn SAT_characteristics<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
_boundaries: &BoundaryTerms,
) {
// North boundary
{
let hi = (k.ny() - 1) as f32 * SBP::h()[0];
let sign = -1.0;
let tau = 1.0;
let slice = s![y.nx() - 1, ..];
SAT_characteristic(
k.north_mut(),
y.north(),
y.south(), // Self South
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_deta_dx.slice(slice),
grid.detj_deta_dy.slice(slice),
);
}
// South boundary
{
let hi = (k.ny() - 1) as f32 * SBP::h()[0];
let sign = 1.0;
let tau = -1.0;
let slice = s![0, ..];
SAT_characteristic(
k.south_mut(),
y.south(),
y.north(), // Self North
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_deta_dx.slice(slice),
grid.detj_deta_dy.slice(slice),
);
}
// West Boundary
{
let hi = (k.nx() - 1) as f32 * SBP::h()[0];
let sign = 1.0;
let tau = -1.0;
let slice = s![.., 0];
println!("{:?}", slice);
SAT_characteristic(
k.west_mut(),
y.west(),
y.east(), // Self East
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_dxi_dx.slice(slice),
grid.detj_dxi_dy.slice(slice),
);
}
// East Boundary
{
let hi = (k.nx() - 1) as f32 * SBP::h()[0];
let sign = -1.0;
let tau = 1.0;
let slice = s![.., y.nx() - 1];
SAT_characteristic(
k.east_mut(),
y.east(),
y.west(), // Self West
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_dxi_dx.slice(slice),
grid.detj_dxi_dy.slice(slice),
);
}
}
#[allow(non_snake_case)]
/// Boundary conditions (SAT)
fn SAT_characteristic(
mut k: ArrayViewMut2<f32>,
y: ArrayView2<f32>,
z: ArrayView2<f32>, // Size 4 x n (all components in line)
hi: f32,
sign: f32,
tau: f32,
detj: ArrayView1<f32>,
detj_d_dx: ArrayView1<f32>,
detj_d_dy: ArrayView1<f32>,
) {
assert_eq!(detj.shape(), detj_d_dx.shape());
assert_eq!(detj.shape(), detj_d_dy.shape());
assert_eq!(y.shape(), z.shape());
assert_eq!(y.shape()[0], 4);
assert_eq!(y.shape()[1], detj.shape()[0]);
for i in 0..z.shape()[1] {
let rho = y[(0, i)];
let rhou = y[(1, i)];
let rhov = y[(2, i)];
let e = y[(3, i)];
let kx_ = detj_d_dx[i] / detj[i];
let ky_ = detj_d_dy[i] / detj[i];
let (kx, ky) = {
let r = f32::hypot(kx_, ky_);
(kx_ / r, ky_ / r)
};
let u = rhou / rho;
let v = rhov / rho;
let theta = kx * u + ky * v;
let p = pressure(GAMMA, rho, rhou, rhov, e);
let c = (GAMMA * p / rho).sqrt();
let phi2 = (GAMMA - 1.0) * (u * u + v * v) / 2.0;
let phi2_c2 = (phi2 + c * c) / (GAMMA - 1.0);
let T = [
[1.0, 0.0, 1.0, 1.0],
[u, ky, u + kx * c, u - kx * c],
[v, -kx, v + ky * c, v - ky * c],
[
phi2 / (GAMMA - 1.0),
ky * u - kx * v,
phi2_c2 + c * theta,
phi2_c2 - c * theta,
],
];
let U = kx_ * u + ky_ * v;
let L = [
U,
U,
U + c * f32::hypot(kx_, ky_),
U - c * f32::hypot(kx_, ky_),
];
let beta = 1.0 / (2.0 * c * c);
let TI = [
[
1.0 - phi2 / (c * c),
(GAMMA - 1.0) * u / (c * c),
(GAMMA - 1.0) * v / (c * c),
-(GAMMA - 1.0) / (c * c),
],
[-(ky * u - kx * v), ky, -kx, 0.0],
[
beta * (phi2 - c * theta),
beta * (kx * c - (GAMMA - 1.0) * u),
beta * (ky * c - (GAMMA - 1.0) * v),
beta * (GAMMA - 1.0),
],
[
beta * (phi2 + c * theta),
-beta * (kx * c + (GAMMA - 1.0) * u),
-beta * (ky * c + (GAMMA - 1.0) * v),
beta * (GAMMA - 1.0),
],
];
let res = [
rho - z[(0, i)],
rhou - z[(1, i)],
rhov - z[(2, i)],
e - z[(3, i)],
];
let mut TIres = [0.0; 4];
for row in 0..4 {
for col in 0..4 {
TIres[row] += TI[row][col] * res[col];
}
}
// L + sign(abs(L)) * TIres
let mut LTIres = [0.0; 4];
for row in 0..4 {
LTIres[row] = (L[row] + sign * L[row].abs()) * TIres[row];
}
// T*LTIres
let mut TLTIres = [0.0; 4];
for row in 0..4 {
for col in 0..4 {
TLTIres[row] += T[row][col] * LTIres[col];
}
}
for comp in 0..4 {
k[(comp, i)] += hi * tau * TLTIres[comp];
}
}
}
pub struct WorkBuffers {
y: Field,
buf: [Field; 4],
tmp: (Field, Field, Field, Field),
}
impl WorkBuffers {
pub fn new(nx: usize, ny: usize) -> Self {
let arr3 = Field::new(nx, ny);
Self {
y: arr3.clone(),
buf: [arr3.clone(), arr3.clone(), arr3.clone(), arr3.clone()],
tmp: (arr3.clone(), arr3.clone(), arr3.clone(), arr3),
}
}
}

View File

@ -16,9 +16,10 @@ where
}
impl<SBP: super::operators::SbpOperator> Grid<SBP> {
pub fn new(nx: usize, ny: usize, x: &[f32], y: &[f32]) -> Result<Self, ndarray::ShapeError> {
let x = Array2::from_shape_vec((ny, nx), x.to_vec())?;
let y = Array2::from_shape_vec((ny, nx), y.to_vec())?;
pub fn new(x: Array2<f32>, y: Array2<f32>) -> Result<Self, ndarray::ShapeError> {
assert_eq!(x.shape(), y.shape());
let ny = x.shape()[0];
let nx = x.shape()[1];
let mut dx_dxi = Array2::zeros((ny, nx));
SBP::diffxi(x.view(), dx_dxi.view_mut());
@ -63,4 +64,21 @@ impl<SBP: super::operators::SbpOperator> Grid<SBP> {
operator: std::marker::PhantomData,
})
}
pub fn new_from_slice(
ny: usize,
nx: usize,
x: &[f32],
y: &[f32],
) -> Result<Self, ndarray::ShapeError> {
let x = Array2::from_shape_vec((ny, nx), x.to_vec())?;
let y = Array2::from_shape_vec((ny, nx), y.to_vec())?;
Self::new(x, y)
}
pub fn nx(&self) -> usize {
self.x.shape()[1]
}
pub fn ny(&self) -> usize {
self.x.shape()[0]
}
}

View File

@ -1,5 +1,6 @@
use wasm_bindgen::prelude::*;
mod euler;
mod grid;
mod maxwell;
pub mod operators;
@ -62,7 +63,7 @@ impl<SBP: operators::SbpOperator> System<SBP> {
assert_eq!((width * height), x.len());
assert_eq!((width * height), y.len());
let grid = Grid::new(width, height, x, y).expect(
let grid = Grid::new_from_slice(height, width, x, y).expect(
"Could not create grid. Different number of elements compared to width*height?",
);
Self {
@ -119,3 +120,132 @@ fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 {
1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp()
}
pub struct EulerSystem<SBP: operators::SbpOperator> {
sys: (euler::Field, euler::Field),
wb: euler::WorkBuffers,
grid: Grid<SBP>,
}
#[wasm_bindgen]
pub struct EulerUniverse(EulerSystem<operators::Upwind4>);
impl EulerUniverse {
pub fn new(x: ndarray::Array2<f32>, y: ndarray::Array2<f32>) -> Self {
Self(EulerSystem::new(x, y))
}
}
#[wasm_bindgen]
impl EulerUniverse {
#[wasm_bindgen(constructor)]
pub fn new_with_slice(height: usize, width: usize, x: &[f32], y: &[f32]) -> Self {
let x = ndarray::Array2::from_shape_vec((height, width), x.to_vec()).unwrap();
let y = ndarray::Array2::from_shape_vec((height, width), y.to_vec()).unwrap();
Self(EulerSystem::new(x, y))
}
pub fn init(&mut self, x0: f32, y0: f32) {
// Should parametrise such that we have radius, drop in pressure at center, etc
let rstar = 0.5;
let eps = 1.0;
#[allow(non_snake_case)]
let M = 0.1;
let p_inf = 1.0 / (euler::GAMMA * M * M);
let t = 0.0;
let nx = self.0.grid.nx();
let ny = self.0.grid.ny();
for j in 0..ny {
for i in 0..nx {
let x = self.0.grid.x[(j, i)];
let y = self.0.grid.y[(j, i)];
let dx = (x - x0) - t;
let dy = (y - y0) - t;
let f = (1.0 - (dx * dx + dy * dy)) / (rstar * rstar);
use euler::GAMMA;
use std::f32::consts::PI;
let u =
1.0 - eps * dy / (2.0 * PI * p_inf.sqrt() * rstar * rstar) * (f / 2.0).exp();
let v =
0.0 + eps * dx / (2.0 * PI * p_inf.sqrt() * rstar * rstar) * (f / 2.0).exp();
let rho = f32::powf(
1.0 - eps * eps * (GAMMA - 1.0) * M * M
/ (8.0 * PI * PI * p_inf * rstar * rstar)
* f.exp(),
1.0 / (GAMMA - 1.0),
);
assert!(rho > 0.0);
let p = rho.powf(GAMMA) * p_inf;
assert!(p > 0.0);
let e = p / (GAMMA - 1.0) + rho * (u * u + v * v) / 2.0;
assert!(e > 0.0);
self.0.sys.0[(0, j, i)] = rho;
self.0.sys.0[(1, j, i)] = rho * u;
self.0.sys.0[(2, j, i)] = rho * v;
self.0.sys.0[(3, j, i)] = e;
}
}
}
pub fn advance(&mut self, dt: f32) {
self.0.advance(dt)
}
pub fn advance_upwind(&mut self, _dt: f32) {
todo!()
}
pub fn get_rho_ptr(&self) -> *const u8 {
self.0.sys.0.rho().as_ptr() as *const u8
}
pub fn get_rhou_ptr(&self) -> *const u8 {
self.0.sys.0.rhou().as_ptr() as *const u8
}
pub fn get_rhov_ptr(&self) -> *const u8 {
self.0.sys.0.rhov().as_ptr() as *const u8
}
pub fn get_e_ptr(&self) -> *const u8 {
self.0.sys.0.e().as_ptr() as *const u8
}
}
impl<SBP: operators::SbpOperator> EulerSystem<SBP> {
pub fn new(x: ndarray::Array2<f32>, y: ndarray::Array2<f32>) -> Self {
let grid = Grid::new(x, y).expect(
"Could not create grid. Different number of elements compared to width*height?",
);
let nx = grid.nx();
let ny = grid.ny();
Self {
sys: (euler::Field::new(ny, nx), euler::Field::new(ny, nx)),
grid,
wb: euler::WorkBuffers::new(ny, nx),
}
}
pub fn advance(&mut self, dt: f32) {
euler::advance(
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
Some(&mut self.wb),
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
#[test]
fn start_and_advance_euler() {
let x = ndarray::Array2::from_shape_fn((20, 10), |(_j, i)| i as f32 / (10 - 1) as f32);
let y = ndarray::Array2::from_shape_fn((20, 10), |(j, _i)| j as f32 / (20 - 1) as f32);
let mut universe = EulerUniverse::new(x, y);
universe.init(0.5, 0.5);
universe.advance(0.01);
}