use rk4 in maxwell

This commit is contained in:
Magnus Ulimoen 2020-01-29 21:06:50 +01:00
parent e957a4fff7
commit 3229554d6b
3 changed files with 107 additions and 201 deletions

View File

@ -1,14 +1,14 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use sbp::maxwell::System;
use sbp::operators::{SbpOperator, Upwind4, UpwindOperator, SBP4};
use sbp::MaxwellSystem;
fn advance_system<SBP: SbpOperator>(universe: &mut MaxwellSystem<SBP>, n: usize) {
fn advance_system<SBP: SbpOperator>(universe: &mut System<SBP>, n: usize) {
for _ in 0..n {
universe.advance(0.01);
}
}
fn advance_system_upwind<UO: UpwindOperator>(universe: &mut MaxwellSystem<UO>, n: usize) {
fn advance_system_upwind<UO: UpwindOperator>(universe: &mut System<UO>, n: usize) {
for _ in 0..n {
universe.advance_upwind(0.01);
}
@ -23,8 +23,7 @@ fn performance_benchmark(c: &mut Criterion) {
let x = ndarray::Array2::from_shape_fn((h, w), |(_, i)| i as f32 / (w - 1) as f32);
let y = ndarray::Array2::from_shape_fn((h, w), |(j, _)| j as f32 / (h - 1) as f32);
let mut universe =
MaxwellSystem::<Upwind4>::new(w, h, x.as_slice().unwrap(), y.as_slice().unwrap());
let mut universe = System::<Upwind4>::new(w, h, x.as_slice().unwrap(), y.as_slice().unwrap());
group.bench_function("advance", |b| {
b.iter(|| {
universe.set_gaussian(0.5, 0.5);
@ -32,8 +31,7 @@ fn performance_benchmark(c: &mut Criterion) {
})
});
let mut universe =
MaxwellSystem::<Upwind4>::new(w, h, x.as_slice().unwrap(), y.as_slice().unwrap());
let mut universe = System::<Upwind4>::new(w, h, x.as_slice().unwrap(), y.as_slice().unwrap());
group.bench_function("advance_upwind", |b| {
b.iter(|| {
universe.set_gaussian(0.5, 0.5);
@ -41,8 +39,7 @@ fn performance_benchmark(c: &mut Criterion) {
})
});
let mut universe =
MaxwellSystem::<SBP4>::new(w, h, x.as_slice().unwrap(), y.as_slice().unwrap());
let mut universe = System::<SBP4>::new(w, h, x.as_slice().unwrap(), y.as_slice().unwrap());
group.bench_function("advance_trad4", |b| {
b.iter(|| {
universe.set_gaussian(0.5, 0.5);

View File

@ -3,9 +3,8 @@ use wasm_bindgen::prelude::*;
pub mod euler;
mod grid;
pub(crate) mod integrate;
mod maxwell;
pub mod maxwell;
pub mod operators;
pub use crate::maxwell::{Field, WorkBuffers};
pub(crate) use grid::Grid;
#[cfg(feature = "wee_alloc")]
@ -19,13 +18,13 @@ pub fn set_panic_hook() {
}
#[wasm_bindgen]
pub struct MaxwellUniverse(MaxwellSystem<operators::Upwind4>);
pub struct MaxwellUniverse(maxwell::System<operators::Upwind4>);
#[wasm_bindgen]
impl MaxwellUniverse {
#[wasm_bindgen(constructor)]
pub fn new(width: usize, height: usize, x: &[f32], y: &[f32]) -> Self {
Self(MaxwellSystem::new(width as usize, height as usize, x, y))
Self(maxwell::System::new(width as usize, height as usize, x, y))
}
pub fn init(&mut self, x0: f32, y0: f32) {
@ -41,87 +40,18 @@ impl MaxwellUniverse {
}
pub fn get_ex_ptr(&self) -> *const u8 {
self.0.sys.0.ex().as_ptr() as *const u8
self.0.field().ex().as_ptr() as *const u8
}
pub fn get_ey_ptr(&self) -> *const u8 {
self.0.sys.0.ey().as_ptr() as *const u8
self.0.field().ey().as_ptr() as *const u8
}
pub fn get_hz_ptr(&self) -> *const u8 {
self.0.sys.0.hz().as_ptr() as *const u8
self.0.field().hz().as_ptr() as *const u8
}
}
pub struct MaxwellSystem<SBP: operators::SbpOperator> {
sys: (Field, Field),
wb: WorkBuffers,
grid: Grid<SBP>,
}
impl<SBP: operators::SbpOperator> MaxwellSystem<SBP> {
pub fn new(width: usize, height: usize, x: &[f32], y: &[f32]) -> Self {
assert_eq!((width * height), x.len());
assert_eq!((width * height), y.len());
let grid = Grid::new_from_slice(height, width, x, y).expect(
"Could not create grid. Different number of elements compared to width*height?",
);
Self {
sys: (Field::new(width, height), Field::new(width, height)),
grid,
wb: WorkBuffers::new(width, height),
}
}
pub fn set_gaussian(&mut self, x0: f32, y0: f32) {
let (ex, hz, ey) = self.sys.0.components_mut();
ndarray::azip!(
(ex in ex, hz in hz, ey in ey,
&x in &self.grid.x, &y in &self.grid.y)
{
*ex = 0.0;
*ey = 0.0;
*hz = gaussian(x, x0, y, y0)/32.0;
});
}
pub fn advance(&mut self, dt: f32) {
maxwell::advance(
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
Some(&mut self.wb),
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
impl<UO: operators::UpwindOperator> MaxwellSystem<UO> {
/// Using artificial dissipation with the upwind operator
pub fn advance_upwind(&mut self, dt: f32) {
maxwell::advance_upwind(
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
Some(&mut self.wb),
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 {
use std::f32;
let x = x - x0;
let y = y - y0;
let sigma = 0.05;
1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp()
}
#[wasm_bindgen]
pub struct EulerUniverse(euler::System<operators::Upwind4>);

View File

@ -1,7 +1,8 @@
use super::integrate::integrate_rk4;
use super::operators::{SbpOperator, UpwindOperator};
use super::Grid;
use ndarray::azip;
use ndarray::prelude::*;
use ndarray::{azip, Zip};
#[derive(Clone, Debug)]
pub struct Field(pub(crate) Array3<f32>);
@ -67,121 +68,91 @@ impl Field {
}
}
pub(crate) fn advance_upwind<UO>(
prev: &Field,
fut: &mut Field,
dt: f32,
grid: &Grid<UO>,
work_buffers: Option<&mut WorkBuffers>,
) where
UO: UpwindOperator,
{
assert_eq!(prev.0.shape(), fut.0.shape());
let mut wb: WorkBuffers;
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
} else {
wb = WorkBuffers::new(prev.nx(), prev.ny());
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
};
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
for i in 0..4 {
// y = y0 + c*kn
y.assign(&prev);
match i {
0 => {}
1 | 2 => {
y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]);
}
3 => {
y.scaled_add(dt, &k[i - 1]);
}
_ => {
unreachable!();
}
};
RHS_upwind(&mut k[i], &y, grid, &boundaries, tmp);
}
Zip::from(&mut fut.0)
.and(&prev.0)
.and(&*k[0])
.and(&*k[1])
.and(&*k[2])
.and(&*k[3])
.apply(|y1, &y0, &k1, &k2, &k3, &k4| *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4));
pub struct System<SBP: SbpOperator> {
sys: (Field, Field),
wb: WorkBuffers,
grid: Grid<SBP>,
}
impl<SBP: SbpOperator> System<SBP> {
pub fn new(width: usize, height: usize, x: &[f32], y: &[f32]) -> Self {
assert_eq!((width * height), x.len());
assert_eq!((width * height), y.len());
let grid = Grid::new_from_slice(height, width, x, y).expect(
"Could not create grid. Different number of elements compared to width*height?",
);
Self {
sys: (Field::new(width, height), Field::new(width, height)),
grid,
wb: WorkBuffers::new(width, height),
}
}
pub fn field(&self) -> &Field {
&self.sys.0
}
pub fn set_gaussian(&mut self, x0: f32, y0: f32) {
let (ex, hz, ey) = self.sys.0.components_mut();
ndarray::azip!(
(ex in ex, hz in hz, ey in ey,
&x in &self.grid.x, &y in &self.grid.y)
{
*ex = 0.0;
*ey = 0.0;
*hz = gaussian(x, x0, y, y0)/32.0;
});
}
pub fn advance(&mut self, dt: f32) {
integrate_rk4(
RHS,
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
&mut self.wb.k,
&mut self.wb.tmp,
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
impl<UO: UpwindOperator> System<UO> {
/// Using artificial dissipation with the upwind operator
pub fn advance_upwind(&mut self, dt: f32) {
integrate_rk4(
RHS_upwind,
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
&mut self.wb.k,
&mut self.wb.tmp,
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 {
use std::f32;
let x = x - x0;
let y = y - y0;
let sigma = 0.05;
1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp()
}
#[allow(non_snake_case)]
/// Solving (Au)_x + (Bu)_y
/// with:
/// A B
/// [ 0, 0, 0] [ 0, 1, 0]
/// [ 0, 0, -1] [ 1, 0, 0]
/// [ 0, -1, 0] [ 0, 0, 0]
pub(crate) fn advance<SBP>(
prev: &Field,
fut: &mut Field,
dt: f32,
grid: &Grid<SBP>,
work_buffers: Option<&mut WorkBuffers>,
) where
SBP: SbpOperator,
{
assert_eq!(prev.0.shape(), fut.0.shape());
let mut wb: WorkBuffers;
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
} else {
wb = WorkBuffers::new(prev.nx(), prev.ny());
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
};
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
for i in 0..4 {
// y = y0 + c*kn
y.assign(&prev);
match i {
0 => {}
1 | 2 => {
y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]);
}
3 => {
y.scaled_add(dt, &k[i - 1]);
}
_ => {
unreachable!();
}
};
RHS(&mut k[i], &y, grid, &boundaries, tmp);
}
Zip::from(&mut fut.0)
.and(&prev.0)
.and(&*k[0])
.and(&*k[1])
.and(&*k[2])
.and(&*k[3])
.apply(|y1, &y0, &k1, &k2, &k3, &k4| *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4));
}
#[allow(non_snake_case)]
///
/// This flux is rotated by the grid metrics
/// (Au)_x + (Bu)_y = 1/J [
/// (J xi_x Au)_xi + (J eta_x Au)_eta
@ -194,12 +165,17 @@ fn RHS<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
boundaries: &BoundaryTerms,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
fluxes(k, y, grid, tmp);
SAT_characteristics(k, y, grid, boundaries);
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
SAT_characteristics(k, y, grid, &boundaries);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
@ -212,13 +188,18 @@ fn RHS_upwind<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
boundaries: &BoundaryTerms,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
fluxes(k, y, grid, tmp);
dissipation(k, y, grid, tmp);
SAT_characteristics(k, y, grid, boundaries);
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
SAT_characteristics(k, y, grid, &boundaries);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
@ -576,8 +557,7 @@ fn SAT_characteristics<SBP: SbpOperator>(
}
pub struct WorkBuffers {
y: Field,
buf: [Field; 4],
k: [Field; 4],
tmp: (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
}
@ -586,8 +566,7 @@ impl WorkBuffers {
let arr2 = Array2::zeros((ny, nx));
let arr3 = Field::new(nx, ny);
Self {
y: arr3.clone(),
buf: [arr3.clone(), arr3.clone(), arr3.clone(), arr3],
k: [arr3.clone(), arr3.clone(), arr3.clone(), arr3],
tmp: (arr2.clone(), arr2.clone(), arr2.clone(), arr2),
}
}