move data structs into separate files
This commit is contained in:
parent
f7f8a7ffff
commit
31ac46e386
|
@ -1,308 +1,13 @@
|
|||
use super::*;
|
||||
|
||||
pub(crate) mod constmatrix {
|
||||
#![allow(unused)]
|
||||
/// A row-major matrix
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
||||
#[repr(C)]
|
||||
pub struct Matrix<T, const M: usize, const N: usize> {
|
||||
pub data: [[T; N]; M],
|
||||
}
|
||||
pub type RowVector<T, const N: usize> = Matrix<T, 1, N>;
|
||||
pub type ColVector<T, const N: usize> = Matrix<T, N, 1>;
|
||||
|
||||
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
data: [[T::default(); N]; M],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::Index<(usize, usize)> for Matrix<T, M, N> {
|
||||
type Output = T;
|
||||
#[inline(always)]
|
||||
fn index(&self, (i, j): (usize, usize)) -> &Self::Output {
|
||||
&self.data[i][j]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::IndexMut<(usize, usize)> for Matrix<T, M, N> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut Self::Output {
|
||||
&mut self.data[i][j]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::Index<usize> for Matrix<T, M, N> {
|
||||
type Output = [T; N];
|
||||
#[inline(always)]
|
||||
fn index(&self, i: usize) -> &Self::Output {
|
||||
&self.data[i]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::IndexMut<usize> for Matrix<T, M, N> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: usize) -> &mut Self::Output {
|
||||
&mut self.data[i]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
pub const fn new(data: [[T; N]; M]) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
#[inline(always)]
|
||||
pub const fn nrows(&self) -> usize {
|
||||
M
|
||||
}
|
||||
#[inline(always)]
|
||||
pub const fn ncols(&self) -> usize {
|
||||
N
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn iter(&self) -> impl Iterator<Item = &T> {
|
||||
self.data.iter().flatten()
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
|
||||
self.data.iter_mut().flatten()
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn iter_rows(
|
||||
&self,
|
||||
) -> impl ExactSizeIterator<Item = &[T; N]> + DoubleEndedIterator<Item = &[T; N]> {
|
||||
self.data.iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const N: usize> ColVector<T, N> {
|
||||
#[inline(always)]
|
||||
pub fn map_to_col(slice: &[T; N]) -> &ColVector<T, N> {
|
||||
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn map_to_col_mut(slice: &mut [T; N]) -> &mut ColVector<T, N> {
|
||||
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const N: usize> RowVector<T, N> {
|
||||
pub fn map_to_row(slice: &[T; N]) -> &Self {
|
||||
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
|
||||
}
|
||||
pub fn map_to_row_mut(slice: &mut [T; N]) -> &mut Self {
|
||||
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const P: usize> Matrix<T, M, P> {
|
||||
#[inline(always)]
|
||||
pub fn matmul_into<const N: usize>(&mut self, lhs: &Matrix<T, M, N>, rhs: &Matrix<T, N, P>)
|
||||
where
|
||||
T: Default + Copy + core::ops::Mul<Output = T> + core::ops::Add<Output = T>,
|
||||
{
|
||||
for i in 0..M {
|
||||
for j in 0..P {
|
||||
let mut t = T::default();
|
||||
for k in 0..N {
|
||||
t = t + lhs[(i, k)] * rhs[(k, j)];
|
||||
}
|
||||
self[(i, j)] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_op_mul_mul {
|
||||
($lhs:ty, $rhs:ty) => {
|
||||
impl<T, const N: usize, const M: usize, const P: usize> core::ops::Mul<$rhs> for $lhs
|
||||
where
|
||||
T: Copy + Default + core::ops::Add<Output = T> + core::ops::Mul<Output = T>,
|
||||
{
|
||||
type Output = Matrix<T, M, P>;
|
||||
fn mul(self, rhs: $rhs) -> Self::Output {
|
||||
let mut out = Matrix::default();
|
||||
out.matmul_into(&self, &rhs);
|
||||
out
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_op_mul_mul! { Matrix<T, M, N>, Matrix<T, N, P> }
|
||||
impl_op_mul_mul! { &Matrix<T, M, N>, Matrix<T, N, P> }
|
||||
impl_op_mul_mul! { Matrix<T, M, N>, &Matrix<T, N, P> }
|
||||
impl_op_mul_mul! { &Matrix<T, M, N>, &Matrix<T, N, P> }
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::MulAssign<T> for Matrix<T, M, N>
|
||||
where
|
||||
T: Copy + core::ops::MulAssign<T>,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mul_assign(&mut self, other: T) {
|
||||
self.iter_mut().for_each(|x| *x *= other)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{super::*, *};
|
||||
#[test]
|
||||
fn construct_copy_type() {
|
||||
let _m0 = Matrix::<i32, 4, 3>::default();
|
||||
let _m1: Matrix<u8, 8, 8> = Matrix::default();
|
||||
|
||||
let _m2 = Matrix::new([[1, 2], [3, 4]]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn matmul() {
|
||||
let m1 = Matrix::new([[1_u8, 2, 3], [4, 5, 6]]);
|
||||
let m2 = Matrix::new([[7_u8, 8, 9, 10], [11, 12, 13, 14], [15, 16, 17, 18]]);
|
||||
|
||||
let m3 = m1 * m2;
|
||||
assert_eq!(m3, Matrix::new([[74, 80, 86, 92], [173, 188, 203, 218]]));
|
||||
}
|
||||
#[test]
|
||||
fn iter() {
|
||||
let m = Matrix::new([[1_u8, 2, 3], [4, 5, 6]]);
|
||||
let mut iter = m.iter();
|
||||
assert_eq!(iter.next(), Some(&1));
|
||||
assert_eq!(iter.next(), Some(&2));
|
||||
assert_eq!(iter.next(), Some(&3));
|
||||
assert_eq!(iter.next(), Some(&4));
|
||||
assert_eq!(iter.next(), Some(&5));
|
||||
assert_eq!(iter.next(), Some(&6));
|
||||
assert_eq!(iter.next(), None);
|
||||
}
|
||||
}
|
||||
|
||||
mod approx {
|
||||
use super::Matrix;
|
||||
use ::approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
||||
|
||||
impl<T, const M: usize, const N: usize> AbsDiffEq for Matrix<T, M, N>
|
||||
where
|
||||
T: AbsDiffEq,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
fn default_epsilon() -> Self::Epsilon {
|
||||
T::default_epsilon()
|
||||
}
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(r, l)| r.abs_diff_eq(l, T::default_epsilon()))
|
||||
}
|
||||
}
|
||||
impl<T, const M: usize, const N: usize> RelativeEq for Matrix<T, M, N>
|
||||
where
|
||||
T: RelativeEq,
|
||||
Self::Epsilon: Copy,
|
||||
{
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
T::default_max_relative()
|
||||
}
|
||||
fn relative_eq(
|
||||
&self,
|
||||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(r, l)| r.relative_eq(l, epsilon, max_relative))
|
||||
}
|
||||
}
|
||||
impl<T, const M: usize, const N: usize> UlpsEq for Matrix<T, M, N>
|
||||
where
|
||||
T: UlpsEq,
|
||||
Self::Epsilon: Copy,
|
||||
{
|
||||
fn default_max_ulps() -> u32 {
|
||||
T::default_max_ulps()
|
||||
}
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(r, l)| r.ulps_eq(l, epsilon, max_ulps))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn flip_ud<const M: usize, const N: usize>(
|
||||
mut m: Matrix<super::Float, M, N>,
|
||||
) -> Matrix<super::Float, M, N> {
|
||||
let mut i = 0;
|
||||
while i < M / 2 {
|
||||
let tmp = m.data[i];
|
||||
m.data[i] = m.data[M - 1 - i];
|
||||
m.data[M - 1 - i] = tmp;
|
||||
i += 1;
|
||||
}
|
||||
m
|
||||
}
|
||||
|
||||
pub(crate) const fn flip_lr<const M: usize, const N: usize>(
|
||||
mut m: Matrix<super::Float, M, N>,
|
||||
) -> Matrix<super::Float, M, N> {
|
||||
let mut i = 0;
|
||||
while i < M {
|
||||
let mut j = 0;
|
||||
while j < N / 2 {
|
||||
let tmp = m.data[i][j];
|
||||
m.data[i][j] = m.data[i][N - 1 - j];
|
||||
m.data[i][N - 1 - j] = tmp;
|
||||
j += 1;
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
m
|
||||
}
|
||||
|
||||
/// Flip all sign bits
|
||||
pub(crate) const fn flip_sign<const M: usize, const N: usize>(
|
||||
mut m: Matrix<super::Float, M, N>,
|
||||
) -> Matrix<super::Float, M, N> {
|
||||
let mut i = 0;
|
||||
while i < M {
|
||||
let mut j = 0;
|
||||
while j < N {
|
||||
m.data[i][j] = -m.data[i][j];
|
||||
j += 1;
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
m
|
||||
}
|
||||
mod flipping {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn flip_lr_test() {
|
||||
let m = Matrix::new([[1.0, 2.0, 3.0, 4.0]]);
|
||||
let flipped = flip_lr(m);
|
||||
assert_eq!(flipped, Matrix::new([[4.0, 3.0, 2.0, 1.0]]));
|
||||
let m = Matrix::new([[1.0, 2.0, 3.0, 4.0, 5.0]]);
|
||||
let flipped = flip_lr(m);
|
||||
assert_eq!(flipped, Matrix::new([[5.0, 4.0, 3.0, 2.0, 1.0]]));
|
||||
}
|
||||
#[test]
|
||||
fn flip_ud_test() {
|
||||
let m = Matrix::new([[1.0], [2.0], [3.0], [4.0]]);
|
||||
let flipped = flip_ud(m);
|
||||
assert_eq!(flipped, Matrix::new([[4.0], [3.0], [2.0], [1.0]]));
|
||||
let m = Matrix::new([[1.0], [2.0], [3.0], [4.0], [5.0]]);
|
||||
let flipped = flip_ud(m);
|
||||
assert_eq!(flipped, Matrix::new([[5.0], [4.0], [3.0], [2.0], [1.0]]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) mod constmatrix;
|
||||
pub(crate) use constmatrix::{flip_lr, flip_sign, flip_ud, ColVector, Matrix, RowVector};
|
||||
|
||||
#[cfg(feature = "fast-float")]
|
||||
mod fastfloat;
|
||||
#[cfg(feature = "fast-float")]
|
||||
use fastfloat::FastFloat;
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn diff_op_1d_matrix<const M: usize, const N: usize, const D: usize>(
|
||||
block: &Matrix<Float, M, N>,
|
||||
|
@ -360,64 +65,6 @@ pub(crate) fn diff_op_1d_matrix<const M: usize, const N: usize, const D: usize>(
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "fast-float")]
|
||||
mod fastfloat {
|
||||
use super::*;
|
||||
#[repr(transparent)]
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Default)]
|
||||
pub(crate) struct FastFloat(Float);
|
||||
|
||||
use core::intrinsics::{fadd_fast, fmul_fast};
|
||||
|
||||
impl core::ops::Mul for FastFloat {
|
||||
type Output = Self;
|
||||
#[inline(always)]
|
||||
fn mul(self, o: Self) -> Self::Output {
|
||||
unsafe { Self(fmul_fast(self.0, o.0)) }
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Add for FastFloat {
|
||||
type Output = Self;
|
||||
#[inline(always)]
|
||||
fn add(self, o: FastFloat) -> Self::Output {
|
||||
unsafe { Self(fadd_fast(self.0, o.0)) }
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::MulAssign<FastFloat> for FastFloat {
|
||||
#[inline(always)]
|
||||
fn mul_assign(&mut self, o: FastFloat) {
|
||||
unsafe {
|
||||
self.0 = fmul_fast(self.0, o.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Mul for &FastFloat {
|
||||
type Output = FastFloat;
|
||||
#[inline(always)]
|
||||
fn mul(self, o: Self) -> Self::Output {
|
||||
unsafe { FastFloat(fmul_fast(self.0, o.0)) }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Float> for FastFloat {
|
||||
#[inline(always)]
|
||||
fn from(f: Float) -> Self {
|
||||
Self(f)
|
||||
}
|
||||
}
|
||||
impl From<FastFloat> for Float {
|
||||
#[inline(always)]
|
||||
fn from(f: FastFloat) -> Self {
|
||||
f.0
|
||||
}
|
||||
}
|
||||
}
|
||||
#[cfg(feature = "fast-float")]
|
||||
use fastfloat::FastFloat;
|
||||
|
||||
#[inline(always)]
|
||||
pub(crate) fn diff_op_1d_slice_matrix<const M: usize, const N: usize, const D: usize>(
|
||||
block: &Matrix<Float, M, N>,
|
||||
|
@ -902,7 +549,7 @@ pub(crate) fn diff_op_col_simd(
|
|||
fn dotproduct<'a>(u: impl Iterator<Item = &'a Float>, v: impl Iterator<Item = &'a Float>) -> Float {
|
||||
u.zip(v).fold(0.0, |acc, (&u, &v)| {
|
||||
#[cfg(feature = "fast-float")]
|
||||
unsafe {
|
||||
{
|
||||
// We do not care about the order of multiplication nor addition
|
||||
(FastFloat::from(acc) + FastFloat::from(u) * FastFloat::from(v)).into()
|
||||
}
|
||||
|
|
|
@ -0,0 +1,298 @@
|
|||
#![allow(unused)]
|
||||
/// A row-major matrix
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
||||
#[repr(C)]
|
||||
pub struct Matrix<T, const M: usize, const N: usize> {
|
||||
pub data: [[T; N]; M],
|
||||
}
|
||||
pub type RowVector<T, const N: usize> = Matrix<T, 1, N>;
|
||||
pub type ColVector<T, const N: usize> = Matrix<T, N, 1>;
|
||||
|
||||
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
data: [[T::default(); N]; M],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::Index<(usize, usize)> for Matrix<T, M, N> {
|
||||
type Output = T;
|
||||
#[inline(always)]
|
||||
fn index(&self, (i, j): (usize, usize)) -> &Self::Output {
|
||||
&self.data[i][j]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::IndexMut<(usize, usize)> for Matrix<T, M, N> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut Self::Output {
|
||||
&mut self.data[i][j]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::Index<usize> for Matrix<T, M, N> {
|
||||
type Output = [T; N];
|
||||
#[inline(always)]
|
||||
fn index(&self, i: usize) -> &Self::Output {
|
||||
&self.data[i]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::IndexMut<usize> for Matrix<T, M, N> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: usize) -> &mut Self::Output {
|
||||
&mut self.data[i]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
pub const fn new(data: [[T; N]; M]) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
#[inline(always)]
|
||||
pub const fn nrows(&self) -> usize {
|
||||
M
|
||||
}
|
||||
#[inline(always)]
|
||||
pub const fn ncols(&self) -> usize {
|
||||
N
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn iter(&self) -> impl Iterator<Item = &T> {
|
||||
self.data.iter().flatten()
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
|
||||
self.data.iter_mut().flatten()
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn iter_rows(
|
||||
&self,
|
||||
) -> impl ExactSizeIterator<Item = &[T; N]> + DoubleEndedIterator<Item = &[T; N]> {
|
||||
self.data.iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const N: usize> ColVector<T, N> {
|
||||
#[inline(always)]
|
||||
pub fn map_to_col(slice: &[T; N]) -> &ColVector<T, N> {
|
||||
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
|
||||
}
|
||||
#[inline(always)]
|
||||
pub fn map_to_col_mut(slice: &mut [T; N]) -> &mut ColVector<T, N> {
|
||||
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const N: usize> RowVector<T, N> {
|
||||
pub fn map_to_row(slice: &[T; N]) -> &Self {
|
||||
unsafe { std::mem::transmute::<&[T; N], &Self>(slice) }
|
||||
}
|
||||
pub fn map_to_row_mut(slice: &mut [T; N]) -> &mut Self {
|
||||
unsafe { std::mem::transmute::<&mut [T; N], &mut Self>(slice) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const M: usize, const P: usize> Matrix<T, M, P> {
|
||||
#[inline(always)]
|
||||
pub fn matmul_into<const N: usize>(&mut self, lhs: &Matrix<T, M, N>, rhs: &Matrix<T, N, P>)
|
||||
where
|
||||
T: Default + Copy + core::ops::Mul<Output = T> + core::ops::Add<Output = T>,
|
||||
{
|
||||
for i in 0..M {
|
||||
for j in 0..P {
|
||||
let mut t = T::default();
|
||||
for k in 0..N {
|
||||
t = t + lhs[(i, k)] * rhs[(k, j)];
|
||||
}
|
||||
self[(i, j)] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_op_mul_mul {
|
||||
($lhs:ty, $rhs:ty) => {
|
||||
impl<T, const N: usize, const M: usize, const P: usize> core::ops::Mul<$rhs> for $lhs
|
||||
where
|
||||
T: Copy + Default + core::ops::Add<Output = T> + core::ops::Mul<Output = T>,
|
||||
{
|
||||
type Output = Matrix<T, M, P>;
|
||||
fn mul(self, rhs: $rhs) -> Self::Output {
|
||||
let mut out = Matrix::default();
|
||||
out.matmul_into(&self, &rhs);
|
||||
out
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_op_mul_mul! { Matrix<T, M, N>, Matrix<T, N, P> }
|
||||
impl_op_mul_mul! { &Matrix<T, M, N>, Matrix<T, N, P> }
|
||||
impl_op_mul_mul! { Matrix<T, M, N>, &Matrix<T, N, P> }
|
||||
impl_op_mul_mul! { &Matrix<T, M, N>, &Matrix<T, N, P> }
|
||||
|
||||
impl<T, const M: usize, const N: usize> core::ops::MulAssign<T> for Matrix<T, M, N>
|
||||
where
|
||||
T: Copy + core::ops::MulAssign<T>,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mul_assign(&mut self, other: T) {
|
||||
self.iter_mut().for_each(|x| *x *= other)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{super::*, *};
|
||||
#[test]
|
||||
fn construct_copy_type() {
|
||||
let _m0 = Matrix::<i32, 4, 3>::default();
|
||||
let _m1: Matrix<u8, 8, 8> = Matrix::default();
|
||||
|
||||
let _m2 = Matrix::new([[1, 2], [3, 4]]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn matmul() {
|
||||
let m1 = Matrix::new([[1_u8, 2, 3], [4, 5, 6]]);
|
||||
let m2 = Matrix::new([[7_u8, 8, 9, 10], [11, 12, 13, 14], [15, 16, 17, 18]]);
|
||||
|
||||
let m3 = m1 * m2;
|
||||
assert_eq!(m3, Matrix::new([[74, 80, 86, 92], [173, 188, 203, 218]]));
|
||||
}
|
||||
#[test]
|
||||
fn iter() {
|
||||
let m = Matrix::new([[1_u8, 2, 3], [4, 5, 6]]);
|
||||
let mut iter = m.iter();
|
||||
assert_eq!(iter.next(), Some(&1));
|
||||
assert_eq!(iter.next(), Some(&2));
|
||||
assert_eq!(iter.next(), Some(&3));
|
||||
assert_eq!(iter.next(), Some(&4));
|
||||
assert_eq!(iter.next(), Some(&5));
|
||||
assert_eq!(iter.next(), Some(&6));
|
||||
assert_eq!(iter.next(), None);
|
||||
}
|
||||
}
|
||||
|
||||
mod approx {
|
||||
use super::Matrix;
|
||||
use ::approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
||||
|
||||
impl<T, const M: usize, const N: usize> AbsDiffEq for Matrix<T, M, N>
|
||||
where
|
||||
T: AbsDiffEq,
|
||||
{
|
||||
type Epsilon = T::Epsilon;
|
||||
fn default_epsilon() -> Self::Epsilon {
|
||||
T::default_epsilon()
|
||||
}
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(r, l)| r.abs_diff_eq(l, T::default_epsilon()))
|
||||
}
|
||||
}
|
||||
impl<T, const M: usize, const N: usize> RelativeEq for Matrix<T, M, N>
|
||||
where
|
||||
T: RelativeEq,
|
||||
Self::Epsilon: Copy,
|
||||
{
|
||||
fn default_max_relative() -> Self::Epsilon {
|
||||
T::default_max_relative()
|
||||
}
|
||||
fn relative_eq(
|
||||
&self,
|
||||
other: &Self,
|
||||
epsilon: Self::Epsilon,
|
||||
max_relative: Self::Epsilon,
|
||||
) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(r, l)| r.relative_eq(l, epsilon, max_relative))
|
||||
}
|
||||
}
|
||||
impl<T, const M: usize, const N: usize> UlpsEq for Matrix<T, M, N>
|
||||
where
|
||||
T: UlpsEq,
|
||||
Self::Epsilon: Copy,
|
||||
{
|
||||
fn default_max_ulps() -> u32 {
|
||||
T::default_max_ulps()
|
||||
}
|
||||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||||
self.iter()
|
||||
.zip(other.iter())
|
||||
.all(|(r, l)| r.ulps_eq(l, epsilon, max_ulps))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn flip_ud<const M: usize, const N: usize>(
|
||||
mut m: Matrix<super::Float, M, N>,
|
||||
) -> Matrix<super::Float, M, N> {
|
||||
let mut i = 0;
|
||||
while i < M / 2 {
|
||||
let tmp = m.data[i];
|
||||
m.data[i] = m.data[M - 1 - i];
|
||||
m.data[M - 1 - i] = tmp;
|
||||
i += 1;
|
||||
}
|
||||
m
|
||||
}
|
||||
|
||||
pub(crate) const fn flip_lr<const M: usize, const N: usize>(
|
||||
mut m: Matrix<super::Float, M, N>,
|
||||
) -> Matrix<super::Float, M, N> {
|
||||
let mut i = 0;
|
||||
while i < M {
|
||||
let mut j = 0;
|
||||
while j < N / 2 {
|
||||
let tmp = m.data[i][j];
|
||||
m.data[i][j] = m.data[i][N - 1 - j];
|
||||
m.data[i][N - 1 - j] = tmp;
|
||||
j += 1;
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
m
|
||||
}
|
||||
|
||||
/// Flip all sign bits
|
||||
pub(crate) const fn flip_sign<const M: usize, const N: usize>(
|
||||
mut m: Matrix<super::Float, M, N>,
|
||||
) -> Matrix<super::Float, M, N> {
|
||||
let mut i = 0;
|
||||
while i < M {
|
||||
let mut j = 0;
|
||||
while j < N {
|
||||
m.data[i][j] = -m.data[i][j];
|
||||
j += 1;
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
m
|
||||
}
|
||||
mod flipping {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn flip_lr_test() {
|
||||
let m = Matrix::new([[1.0, 2.0, 3.0, 4.0]]);
|
||||
let flipped = flip_lr(m);
|
||||
assert_eq!(flipped, Matrix::new([[4.0, 3.0, 2.0, 1.0]]));
|
||||
let m = Matrix::new([[1.0, 2.0, 3.0, 4.0, 5.0]]);
|
||||
let flipped = flip_lr(m);
|
||||
assert_eq!(flipped, Matrix::new([[5.0, 4.0, 3.0, 2.0, 1.0]]));
|
||||
}
|
||||
#[test]
|
||||
fn flip_ud_test() {
|
||||
let m = Matrix::new([[1.0], [2.0], [3.0], [4.0]]);
|
||||
let flipped = flip_ud(m);
|
||||
assert_eq!(flipped, Matrix::new([[4.0], [3.0], [2.0], [1.0]]));
|
||||
let m = Matrix::new([[1.0], [2.0], [3.0], [4.0], [5.0]]);
|
||||
let flipped = flip_ud(m);
|
||||
assert_eq!(flipped, Matrix::new([[5.0], [4.0], [3.0], [2.0], [1.0]]));
|
||||
}
|
||||
}
|
|
@ -0,0 +1,53 @@
|
|||
use super::*;
|
||||
|
||||
#[repr(transparent)]
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Default)]
|
||||
pub(crate) struct FastFloat(Float);
|
||||
|
||||
use core::intrinsics::{fadd_fast, fmul_fast};
|
||||
|
||||
impl core::ops::Mul for FastFloat {
|
||||
type Output = Self;
|
||||
#[inline(always)]
|
||||
fn mul(self, o: Self) -> Self::Output {
|
||||
unsafe { Self(fmul_fast(self.0, o.0)) }
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Add for FastFloat {
|
||||
type Output = Self;
|
||||
#[inline(always)]
|
||||
fn add(self, o: FastFloat) -> Self::Output {
|
||||
unsafe { Self(fadd_fast(self.0, o.0)) }
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::MulAssign<FastFloat> for FastFloat {
|
||||
#[inline(always)]
|
||||
fn mul_assign(&mut self, o: FastFloat) {
|
||||
unsafe {
|
||||
self.0 = fmul_fast(self.0, o.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Mul for &FastFloat {
|
||||
type Output = FastFloat;
|
||||
#[inline(always)]
|
||||
fn mul(self, o: Self) -> Self::Output {
|
||||
unsafe { FastFloat(fmul_fast(self.0, o.0)) }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Float> for FastFloat {
|
||||
#[inline(always)]
|
||||
fn from(f: Float) -> Self {
|
||||
Self(f)
|
||||
}
|
||||
}
|
||||
impl From<FastFloat> for Float {
|
||||
#[inline(always)]
|
||||
fn from(f: FastFloat) -> Self {
|
||||
f.0
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue