SummationByParts/src/maxwell.rs

420 lines
12 KiB
Rust
Raw Normal View History

2019-09-03 17:41:49 +00:00
use super::operators::SbpOperator;
2019-12-11 20:39:29 +00:00
use super::Grid;
2019-12-11 19:36:12 +00:00
use ndarray::prelude::*;
use ndarray::{azip, Zip};
2019-08-13 18:43:31 +00:00
2019-12-11 19:36:12 +00:00
#[derive(Clone, Debug)]
pub struct Field(pub(crate) Array3<f32>);
impl std::ops::Deref for Field {
type Target = Array3<f32>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for Field {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
2019-08-13 18:43:31 +00:00
}
fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 {
use std::f32;
let x = x - x0;
let y = y - y0;
let sigma = 0.05;
1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp()
}
2019-12-11 19:36:12 +00:00
impl Field {
pub fn new(width: usize, height: usize) -> Self {
let field = Array3::zeros((3, height, width));
Self(field)
}
pub fn nx(&self) -> usize {
self.0.shape()[2]
}
pub fn ny(&self) -> usize {
self.0.shape()[1]
}
pub fn ex(&self) -> ArrayView2<f32> {
self.slice(s![0, .., ..])
}
pub fn hz(&self) -> ArrayView2<f32> {
self.slice(s![1, .., ..])
}
pub fn ey(&self) -> ArrayView2<f32> {
self.slice(s![2, .., ..])
}
pub fn ex_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![0, .., ..])
}
pub fn hz_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![1, .., ..])
}
pub fn ey_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![2, .., ..])
}
pub fn components_mut(
&mut self,
) -> (ArrayViewMut2<f32>, ArrayViewMut2<f32>, ArrayViewMut2<f32>) {
let nx = self.nx();
let ny = self.ny();
2019-08-13 18:43:31 +00:00
2019-12-11 19:36:12 +00:00
let (ex, f) = self.0.view_mut().split_at(Axis(0), 1);
let (hz, ey) = f.split_at(Axis(0), 1);
(
ex.into_shape((ny, nx)).unwrap(),
hz.into_shape((ny, nx)).unwrap(),
ey.into_shape((ny, nx)).unwrap(),
)
2019-08-13 18:43:31 +00:00
}
pub fn set_gaussian(&mut self, x0: f32, y0: f32) {
2019-12-11 19:36:12 +00:00
let nx = self.nx();
let ny = self.ny();
let (mut ex, mut hz, mut ey) = self.components_mut();
2019-08-13 18:43:31 +00:00
for j in 0..ny {
for i in 0..nx {
// Must divice interval on nx/ny instead of nx - 1/ny-1
// due to periodic conditions [0, 1)
let x = i as f32 / nx as f32;
let y = j as f32 / ny as f32;
2019-12-11 19:36:12 +00:00
ex[(j, i)] = 0.0;
ey[(j, i)] = 0.0;
hz[(j, i)] = gaussian(x, x0, y, y0) / 32.0;
2019-08-13 18:43:31 +00:00
}
}
}
2019-12-11 20:39:29 +00:00
/// Solving (Au)_x + (Bu)_y
/// with:
/// A B
/// [ 0, 0, 0] [ 0, 1, 0]
/// [ 0, 0, -1] [ 1, 0, 0]
/// [ 0, -1, 0] [ 0, 0, 0]
2019-12-10 21:03:42 +00:00
pub(crate) fn advance<SBP>(
&self,
fut: &mut Self,
dt: f32,
2019-12-11 20:39:29 +00:00
grid: &Grid<SBP>,
2019-12-10 21:03:42 +00:00
work_buffers: Option<&mut WorkBuffers>,
) where
2019-09-03 17:41:49 +00:00
SBP: SbpOperator,
{
2019-12-11 19:36:12 +00:00
assert_eq!(self.0.shape(), fut.0.shape());
2019-08-13 18:43:31 +00:00
let mut wb: WorkBuffers;
2019-12-10 21:03:42 +00:00
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
2019-11-07 19:41:49 +00:00
} else {
2019-12-11 19:36:12 +00:00
wb = WorkBuffers::new(self.nx(), self.ny());
2019-12-10 21:03:42 +00:00
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
2019-08-13 18:43:31 +00:00
};
for i in 0..4 {
// y = y0 + c*kn
2019-12-11 19:36:12 +00:00
y.assign(&self);
2019-08-13 18:43:31 +00:00
match i {
0 => {}
2019-11-07 19:41:49 +00:00
1 | 2 => {
2019-12-11 19:36:12 +00:00
y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]);
2019-08-13 18:43:31 +00:00
}
3 => {
2019-12-11 19:36:12 +00:00
y.scaled_add(dt, &k[i - 1]);
2019-08-13 18:43:31 +00:00
}
_ => {
unreachable!();
}
};
2019-12-11 20:39:29 +00:00
RHS(&mut k[i], &y, grid, tmp);
2019-08-13 18:43:31 +00:00
}
2019-12-11 19:36:12 +00:00
Zip::from(&mut fut.0)
.and(&self.0)
.and(&*k[0])
.and(&*k[1])
.and(&*k[2])
.and(&*k[3])
2019-08-13 18:43:31 +00:00
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
}
}
2019-12-11 20:39:29 +00:00
#[allow(non_snake_case)]
/// This flux is rotated by the grid metrics
/// (Au)_x + (Bu)_y = 1/J [
/// (J xi_x Au)_xi + (J eta_x Au)_eta
/// (J xi_y Bu)_xi + (J eta_y Bu)_eta
/// ]
/// where J is the grid determinant
///
/// This is used both in fluxes and SAT terms
fn RHS<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
fluxes(k, y, grid, tmp);
SAT_characteristics(k, y, grid);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
*k /= detj;
});
}
fn fluxes<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
// ex = hz_y
{
ndarray::azip!((a in &mut tmp.0,
&dxi_dy in &grid.detj_dxi_dy,
&hz in &y.hz())
*a = dxi_dy * hz
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dy in &grid.detj_deta_dy,
&hz in &y.hz())
*b = deta_dy * hz
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.ex_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
{
// hz = -ey_x + ex_y
ndarray::azip!((a in &mut tmp.0,
&dxi_dx in &grid.detj_dxi_dx,
&dxi_dy in &grid.detj_dxi_dy,
&ex in &y.ex(),
&ey in &y.ey())
*a = dxi_dx * -ey + dxi_dy * ex
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dx in &grid.detj_deta_dx,
&deta_dy in &grid.detj_deta_dy,
&ex in &y.ex(),
&ey in &y.ey())
*b = deta_dx * -ey + deta_dy * ex
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
// ey = -hz_x
{
ndarray::azip!((a in &mut tmp.0,
&dxi_dx in &grid.detj_dxi_dx,
&hz in &y.hz())
*a = dxi_dx * -hz
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
azip!((b in &mut tmp.2,
&deta_dx in &grid.detj_deta_dx,
&hz in &y.hz())
*b = deta_dx * -hz
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
azip!((flux in &mut k.ey_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
}
#[allow(non_snake_case)]
fn SAT_characteristics<SBP: SbpOperator>(k: &mut Field, y: &Field, grid: &Grid<SBP>) {
// Boundary conditions (SAT)
let ny = y.ny();
let nx = y.nx();
fn positive_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
let r = (kx * kx + ky * ky).sqrt();
[
[ky * ky / r / 2.0, ky / 2.0, -kx * ky / r / 2.0],
[ky / 2.0, r / 2.0, -kx / 2.0],
[-kx * ky / r / 2.0, -kx / 2.0, kx * kx / r / 2.0],
]
}
fn negative_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
let r = (kx * kx + ky * ky).sqrt();
[
[-ky * ky / r / 2.0, ky / 2.0, kx * ky / r / 2.0],
[ky / 2.0, -r / 2.0, -kx / 2.0],
[kx * ky / r / 2.0, -kx / 2.0, -kx * kx / r / 2.0],
]
}
let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32);
let g = y.slice(s![.., .., 0]);
let v = y.slice(s![.., .., nx - 1]);
{
// East boundary
let mut k = k.slice_mut(s![.., .., nx - 1]);
for j in 0..ny {
// East boundary, positive flux
let tau = -1.0;
let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
let kx = grid.detj_dxi_dx[(j, nx - 1)];
let ky = grid.detj_dxi_dy[(j, nx - 1)];
let plus = positive_flux(kx, ky);
k[(0, j)] += tau
* hinv
* (plus[0][0] * (v.0 - g.0) + plus[0][1] * (v.1 - g.1) + plus[0][2] * (v.2 - g.2));
k[(1, j)] += tau
* hinv
* (plus[1][0] * (v.0 - g.0) + plus[1][1] * (v.1 - g.1) + plus[1][2] * (v.2 - g.2));
k[(2, j)] += tau
* hinv
* (plus[2][0] * (v.0 - g.0) + plus[2][1] * (v.1 - g.1) + plus[2][2] * (v.2 - g.2));
}
}
{
// West boundary, negative flux
let mut k = k.slice_mut(s![.., .., 0]);
let (v, g) = (g, v);
for j in 0..ny {
let tau = 1.0;
let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
let kx = grid.detj_dxi_dx[(j, 0)];
let ky = grid.detj_dxi_dy[(j, 0)];
let minus = negative_flux(kx, ky);
k[(0, j)] += tau
* hinv
* (minus[0][0] * (v.0 - g.0)
+ minus[0][1] * (v.1 - g.1)
+ minus[0][2] * (v.2 - g.2));
k[(1, j)] += tau
* hinv
* (minus[1][0] * (v.0 - g.0)
+ minus[1][1] * (v.1 - g.1)
+ minus[1][2] * (v.2 - g.2));
k[(2, j)] += tau
* hinv
* (minus[2][0] * (v.0 - g.0)
+ minus[2][1] * (v.1 - g.1)
+ minus[2][2] * (v.2 - g.2));
}
}
let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32);
let g = y.slice(s![.., 0, ..]);
let v = y.slice(s![.., ny - 1, ..]);
{
let mut k = k.slice_mut(s![.., ny - 1, ..]);
for j in 0..nx {
// North boundary, positive flux
let tau = -1.0;
let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
let kx = grid.detj_deta_dx[(ny - 1, j)];
let ky = grid.detj_deta_dy[(ny - 1, j)];
let plus = positive_flux(kx, ky);
k[(0, j)] += tau
* hinv
* (plus[0][0] * (v.0 - g.0) + plus[0][1] * (v.1 - g.1) + plus[0][2] * (v.2 - g.2));
k[(1, j)] += tau
* hinv
* (plus[1][0] * (v.0 - g.0) + plus[1][1] * (v.1 - g.1) + plus[1][2] * (v.2 - g.2));
k[(2, j)] += tau
* hinv
* (plus[2][0] * (v.0 - g.0) + plus[2][1] * (v.1 - g.1) + plus[2][2] * (v.2 - g.2));
}
}
{
let (v, g) = (g, v);
let mut k = k.slice_mut(s![.., 0, ..]);
for j in 0..nx {
// South boundary, negative flux
let tau = 1.0;
let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
let kx = grid.detj_deta_dx[(0, j)];
let ky = grid.detj_deta_dy[(0, j)];
let minus = negative_flux(kx, ky);
k[(0, j)] += tau
* hinv
* (minus[0][0] * (v.0 - g.0)
+ minus[0][1] * (v.1 - g.1)
+ minus[0][2] * (v.2 - g.2));
k[(1, j)] += tau
* hinv
* (minus[1][0] * (v.0 - g.0)
+ minus[1][1] * (v.1 - g.1)
+ minus[1][2] * (v.2 - g.2));
k[(2, j)] += tau
* hinv
* (minus[2][0] * (v.0 - g.0)
+ minus[2][1] * (v.1 - g.1)
+ minus[2][2] * (v.2 - g.2));
}
}
}
2019-08-13 18:43:31 +00:00
pub struct WorkBuffers {
2019-12-11 19:36:12 +00:00
y: Field,
buf: [Field; 4],
2019-12-10 21:03:42 +00:00
tmp: (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
2019-08-13 18:43:31 +00:00
}
impl WorkBuffers {
pub fn new(nx: usize, ny: usize) -> Self {
2019-12-11 19:36:12 +00:00
let arr2 = Array2::zeros((ny, nx));
let arr3 = Field::new(nx, ny);
2019-08-13 18:43:31 +00:00
Self {
2019-12-11 19:36:12 +00:00
y: arr3.clone(),
buf: [arr3.clone(), arr3.clone(), arr3.clone(), arr3],
tmp: (arr2.clone(), arr2.clone(), arr2.clone(), arr2),
2019-08-13 18:43:31 +00:00
}
}
}