SummationByParts/src/maxwell.rs

360 lines
12 KiB
Rust
Raw Normal View History

2019-09-03 17:41:49 +00:00
use super::operators::SbpOperator;
2019-08-13 18:43:31 +00:00
use ndarray::{Array2, Zip};
pub struct System {
pub(crate) ex: Array2<f32>,
pub(crate) ey: Array2<f32>,
pub(crate) hz: Array2<f32>,
}
fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 {
use std::f32;
let x = x - x0;
let y = y - y0;
let sigma = 0.05;
1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp()
}
impl System {
pub fn new(width: u32, height: u32) -> Self {
let field = Array2::zeros((height as usize, width as usize));
let ex = field.clone();
let ey = field.clone();
let hz = field;
Self { ex, ey, hz }
}
pub fn set_gaussian(&mut self, x0: f32, y0: f32) {
let nx = self.ex.shape()[1];
let ny = self.ex.shape()[0];
for j in 0..ny {
for i in 0..nx {
// Must divice interval on nx/ny instead of nx - 1/ny-1
// due to periodic conditions [0, 1)
let x = i as f32 / nx as f32;
let y = j as f32 / ny as f32;
self.ex[(j, i)] = 0.0;
self.ey[(j, i)] = 0.0;
self.hz[(j, i)] = gaussian(x, x0, y, y0) / 32.0;
}
}
}
2019-12-10 21:03:42 +00:00
pub(crate) fn advance<SBP>(
&self,
fut: &mut Self,
dt: f32,
grid: &super::Grid<SBP>,
work_buffers: Option<&mut WorkBuffers>,
) where
2019-09-03 17:41:49 +00:00
SBP: SbpOperator,
{
2019-08-13 18:43:31 +00:00
assert_eq!(self.ex.shape(), fut.ex.shape());
let mut wb: WorkBuffers;
2019-12-10 21:03:42 +00:00
let (y, k, tmp) = if let Some(x) = work_buffers {
(&mut x.y, &mut x.buf, &mut x.tmp)
2019-11-07 19:41:49 +00:00
} else {
wb = WorkBuffers::new(self.ex.shape()[1], self.ex.shape()[0]);
2019-12-10 21:03:42 +00:00
(&mut wb.y, &mut wb.buf, &mut wb.tmp)
2019-08-13 18:43:31 +00:00
};
for i in 0..4 {
// y = y0 + c*kn
y.0.assign(&self.ex);
y.1.assign(&self.hz);
y.2.assign(&self.ey);
match i {
0 => {}
2019-11-07 19:41:49 +00:00
1 | 2 => {
2019-08-13 18:43:31 +00:00
y.0.scaled_add(1.0 / 2.0 * dt, &k[i - 1].0);
y.1.scaled_add(1.0 / 2.0 * dt, &k[i - 1].1);
y.2.scaled_add(1.0 / 2.0 * dt, &k[i - 1].2);
}
3 => {
y.0.scaled_add(dt, &k[i - 1].0);
y.1.scaled_add(dt, &k[i - 1].1);
y.2.scaled_add(dt, &k[i - 1].2);
}
_ => {
unreachable!();
}
};
2019-12-10 21:03:42 +00:00
// Solving (Au)_x + (Bu)_y
// with:
// A B
// [ 0, 0, 0] [ 0, 1, 0]
// [ 0, 0, -1] [ 1, 0, 0]
// [ 0, -1, 0] [ 0, 0, 0]
// This flux is rotated by the grid metrics
// (Au)_x + (Bu)_y = 1/J [
// (J xi_x Au)_xi + (J eta_x Au)_eta
// (J xi_y Bu)_xi + (J eta_y Bu)_eta
// ]
// where J is the grid determinant
2019-08-13 18:43:31 +00:00
// ex = hz_y
2019-12-10 21:03:42 +00:00
{
ndarray::azip!((a in &mut tmp.0,
&dxi_dy in &grid.detj_dxi_dy,
&hz in &y.1)
*a = dxi_dy * hz
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dy in &grid.detj_deta_dy,
&hz in &y.1)
*b = deta_dy * hz
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k[i].0, &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
{
// hz = -ey_x + ex_y
ndarray::azip!((a in &mut tmp.0,
&dxi_dx in &grid.detj_dxi_dx,
&dxi_dy in &grid.detj_dxi_dy,
&ex in &y.0,
&ey in &y.2)
*a = dxi_dx * -ey + dxi_dy * ex
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dx in &grid.detj_deta_dx,
&deta_dy in &grid.detj_deta_dy,
&ex in &y.0,
&ey in &y.2)
*b = deta_dx * -ey + deta_dy * ex
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k[i].1, &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
2019-08-13 18:43:31 +00:00
// ey = -hz_x
2019-12-10 21:03:42 +00:00
{
ndarray::azip!((a in &mut tmp.0,
&dxi_dx in &grid.detj_dxi_dx,
&hz in &y.1)
*a = dxi_dx * -hz
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dx in &grid.detj_deta_dx,
&hz in &y.1)
*b = deta_dx * -hz
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k[i].2, &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
2019-08-13 18:43:31 +00:00
2019-09-03 14:16:07 +00:00
// Boundary conditions (SAT)
2019-09-03 15:53:59 +00:00
let ny = y.0.shape()[0];
let nx = y.0.shape()[1];
2019-09-03 16:17:00 +00:00
2019-09-03 17:57:41 +00:00
let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32);
2019-09-03 14:16:07 +00:00
2019-12-10 21:03:42 +00:00
fn positive_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
let r = (kx * kx + ky * ky).sqrt();
[
[ky * ky / r / 2.0, ky / 2.0, -kx * ky / r / 2.0],
[ky / 2.0, r / 2.0, -kx / 2.0],
[-kx * ky / r / 2.0, -kx / 2.0, kx * kx / r / 2.0],
]
}
fn negative_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
let r = (kx * kx + ky * ky).sqrt();
[
[-ky * ky / r / 2.0, ky / 2.0, kx * ky / r / 2.0],
[ky / 2.0, -r / 2.0, -kx / 2.0],
[kx * ky / r / 2.0, -kx / 2.0, -kx * kx / r / 2.0],
]
}
2019-09-03 14:16:07 +00:00
for j in 0..ny {
2019-12-10 21:03:42 +00:00
// East boundary, positive flux
2019-09-03 15:53:59 +00:00
let tau = -1.0;
2019-09-03 14:16:07 +00:00
let g = (y.0[(j, 0)], y.1[(j, 0)], y.2[(j, 0)]);
let v = (y.0[(j, nx - 1)], y.1[(j, nx - 1)], y.2[(j, nx - 1)]);
2019-12-10 21:03:42 +00:00
let kx = grid.detj_dxi_dx[(j, nx - 1)];
let ky = grid.detj_dxi_dy[(j, nx - 1)];
let plus = positive_flux(kx, ky);
2019-09-03 14:16:07 +00:00
2019-12-10 21:03:42 +00:00
k[i].0[(j, nx - 1)] += tau
* hinv
* (plus[0][0] * (v.0 - g.0)
+ plus[0][1] * (v.1 - g.1)
+ plus[0][2] * (v.2 - g.2));
k[i].1[(j, nx - 1)] += tau
* hinv
* (plus[1][0] * (v.0 - g.0)
+ plus[1][1] * (v.1 - g.1)
+ plus[1][2] * (v.2 - g.2));
k[i].2[(j, nx - 1)] += tau
* hinv
* (plus[2][0] * (v.0 - g.0)
+ plus[2][1] * (v.1 - g.1)
+ plus[2][2] * (v.2 - g.2));
// West boundary, negative flux
2019-09-03 18:26:07 +00:00
let tau = 1.0;
let (v, g) = (g, v);
2019-12-10 21:03:42 +00:00
let kx = grid.detj_dxi_dx[(j, 0)];
let ky = grid.detj_dxi_dy[(j, 0)];
let minus = negative_flux(kx, ky);
k[i].0[(j, 0)] += tau
* hinv
* (minus[0][0] * (v.0 - g.0)
+ minus[0][1] * (v.1 - g.1)
+ minus[0][2] * (v.2 - g.2));
k[i].1[(j, 0)] += tau
* hinv
* (minus[1][0] * (v.0 - g.0)
+ minus[1][1] * (v.1 - g.1)
+ minus[1][2] * (v.2 - g.2));
k[i].2[(j, 0)] += tau
* hinv
* (minus[2][0] * (v.0 - g.0)
+ minus[2][1] * (v.1 - g.1)
+ minus[2][2] * (v.2 - g.2));
2019-09-03 14:16:07 +00:00
}
2019-09-03 16:17:00 +00:00
2019-09-03 17:57:41 +00:00
let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32);
2019-09-03 16:17:00 +00:00
for j in 0..nx {
2019-12-10 21:03:42 +00:00
// North boundary, positive flux
2019-09-03 16:17:00 +00:00
let tau = -1.0;
let g = (y.0[(0, j)], y.1[(0, j)], y.2[(0, j)]);
let v = (y.0[(ny - 1, j)], y.1[(ny - 1, j)], y.2[(ny - 1, j)]);
2019-12-10 21:03:42 +00:00
let kx = grid.detj_deta_dx[(ny - 1, j)];
let ky = grid.detj_deta_dy[(ny - 1, j)];
let plus = positive_flux(kx, ky);
2019-09-03 16:17:00 +00:00
2019-12-10 21:03:42 +00:00
k[i].0[(ny - 1, j)] += tau
* hinv
* (plus[0][0] * (v.0 - g.0)
+ plus[0][1] * (v.1 - g.1)
+ plus[0][2] * (v.2 - g.2));
k[i].1[(ny - 1, j)] += tau
* hinv
* (plus[1][0] * (v.0 - g.0)
+ plus[1][1] * (v.1 - g.1)
+ plus[1][2] * (v.2 - g.2));
k[i].2[(ny - 1, j)] += tau
* hinv
* (plus[2][0] * (v.0 - g.0)
+ plus[2][1] * (v.1 - g.1)
+ plus[2][2] * (v.2 - g.2));
// South boundary, negative flux
2019-09-03 16:17:00 +00:00
let tau = 1.0;
2019-09-03 18:26:07 +00:00
let (g, v) = (v, g);
2019-09-03 16:17:00 +00:00
2019-12-10 21:03:42 +00:00
let kx = grid.detj_deta_dx[(0, j)];
let ky = grid.detj_deta_dy[(0, j)];
let minus = negative_flux(kx, ky);
k[i].0[(0, j)] += tau
* hinv
* (minus[0][0] * (v.0 - g.0)
+ minus[0][1] * (v.1 - g.1)
+ minus[0][2] * (v.2 - g.2));
k[i].1[(0, j)] += tau
* hinv
* (minus[1][0] * (v.0 - g.0)
+ minus[1][1] * (v.1 - g.1)
+ minus[1][2] * (v.2 - g.2));
k[i].2[(0, j)] += tau
* hinv
* (minus[2][0] * (v.0 - g.0)
+ minus[2][1] * (v.1 - g.1)
+ minus[2][2] * (v.2 - g.2));
2019-09-03 16:17:00 +00:00
}
2019-12-10 21:03:42 +00:00
ndarray::azip!((k0 in &mut k[i].0,
k1 in &mut k[i].1,
k2 in &mut k[i].2,
&detj in &grid.detj) {
*k0 /= detj;
*k1 /= detj;
*k2 /= detj;
});
2019-08-13 18:43:31 +00:00
}
Zip::from(&mut fut.ex)
.and(&self.ex)
.and(&k[0].0)
.and(&k[1].0)
.and(&k[2].0)
.and(&k[3].0)
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
Zip::from(&mut fut.hz)
.and(&self.hz)
.and(&k[0].1)
.and(&k[1].1)
.and(&k[2].1)
.and(&k[3].1)
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
Zip::from(&mut fut.ey)
.and(&self.ey)
.and(&k[0].2)
.and(&k[1].2)
.and(&k[2].2)
.and(&k[3].2)
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
}
}
pub struct WorkBuffers {
y: (Array2<f32>, Array2<f32>, Array2<f32>),
buf: [(Array2<f32>, Array2<f32>, Array2<f32>); 4],
2019-12-10 21:03:42 +00:00
tmp: (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
2019-08-13 18:43:31 +00:00
}
impl WorkBuffers {
pub fn new(nx: usize, ny: usize) -> Self {
let arr = Array2::zeros((ny, nx));
Self {
y: (arr.clone(), arr.clone(), arr.clone()),
buf: [
(arr.clone(), arr.clone(), arr.clone()),
(arr.clone(), arr.clone(), arr.clone()),
(arr.clone(), arr.clone(), arr.clone()),
2019-12-10 21:03:42 +00:00
(arr.clone(), arr.clone(), arr.clone()),
2019-08-13 18:43:31 +00:00
],
2019-12-10 21:03:42 +00:00
tmp: (arr.clone(), arr.clone(), arr.clone(), arr),
2019-08-13 18:43:31 +00:00
}
}
}