SummationByParts/multigrid/src/main.rs

307 lines
8.8 KiB
Rust
Raw Normal View History

2020-04-15 17:49:59 +00:00
use either::*;
2020-04-15 18:18:51 +00:00
use structopt::StructOpt;
2020-04-15 17:49:59 +00:00
use sbp::operators::{SbpOperator2d, UpwindOperator2d};
2020-03-31 22:08:55 +00:00
use sbp::*;
2020-04-13 11:31:01 +00:00
mod file;
2020-09-03 21:49:45 +00:00
mod parsing;
2020-04-13 11:31:01 +00:00
use file::*;
2020-04-15 21:58:39 +00:00
pub(crate) type DiffOp = Either<Box<dyn SbpOperator2d>, Box<dyn UpwindOperator2d>>;
2020-04-12 22:00:27 +00:00
struct System {
2020-03-31 22:08:55 +00:00
fnow: Vec<euler::Field>,
fnext: Vec<euler::Field>,
2020-04-12 19:32:20 +00:00
wb: Vec<euler::WorkBuffers>,
2020-03-31 22:08:55 +00:00
k: [Vec<euler::Field>; 4],
2020-04-03 22:29:02 +00:00
grids: Vec<grid::Grid>,
2020-04-15 17:49:59 +00:00
metrics: Vec<grid::Metrics>,
2020-04-02 19:36:56 +00:00
bt: Vec<euler::BoundaryCharacteristics>,
2020-04-10 10:30:18 +00:00
eb: Vec<euler::BoundaryStorage>,
2020-04-06 20:11:35 +00:00
time: Float,
2020-04-15 21:58:39 +00:00
operators: Vec<DiffOp>,
2020-03-31 22:08:55 +00:00
}
2020-04-12 22:00:27 +00:00
impl System {
fn new(
grids: Vec<grid::Grid>,
bt: Vec<euler::BoundaryCharacteristics>,
2020-04-15 21:58:39 +00:00
operators: Vec<DiffOp>,
2020-04-12 22:00:27 +00:00
) -> Self {
2020-03-31 22:08:55 +00:00
let fnow = grids
.iter()
.map(|g| euler::Field::new(g.ny(), g.nx()))
.collect::<Vec<_>>();
let fnext = fnow.clone();
let wb = grids
.iter()
2020-04-12 19:32:20 +00:00
.map(|g| euler::WorkBuffers::new(g.ny(), g.nx()))
2020-03-31 22:08:55 +00:00
.collect();
let k = [fnow.clone(), fnow.clone(), fnow.clone(), fnow.clone()];
2020-04-12 22:00:27 +00:00
let metrics = grids
.iter()
2020-04-15 17:49:59 +00:00
.zip(&operators)
.map(|(g, op)| {
let sbpop: &dyn SbpOperator2d = op.as_ref().either(|op| &**op, |uo| uo.as_sbp());
g.metrics(sbpop).unwrap()
2020-04-12 22:00:27 +00:00
})
.collect::<Vec<_>>();
2020-04-06 20:11:35 +00:00
let eb = bt
.iter()
.zip(&grids)
2020-04-10 10:30:18 +00:00
.map(|(bt, grid)| euler::BoundaryStorage::new(bt, grid))
2020-04-06 20:11:35 +00:00
.collect();
2020-03-31 22:08:55 +00:00
Self {
fnow,
fnext,
k,
wb,
grids,
2020-04-03 22:29:02 +00:00
metrics,
2020-04-02 19:36:56 +00:00
bt,
2020-04-06 20:11:35 +00:00
eb,
time: 0.0,
2020-04-15 17:49:59 +00:00
operators,
2020-03-31 22:08:55 +00:00
}
}
2020-04-22 21:59:06 +00:00
fn vortex(&mut self, t: Float, vortex_params: &euler::VortexParameters) {
2020-03-31 22:08:55 +00:00
for (f, g) in self.fnow.iter_mut().zip(&self.grids) {
2020-04-22 21:59:06 +00:00
f.vortex(g.x(), g.y(), t, &vortex_params);
2020-03-31 22:08:55 +00:00
}
}
2020-04-12 10:35:16 +00:00
fn advance(&mut self, dt: Float, pool: &rayon::ThreadPool) {
2020-04-12 22:00:27 +00:00
let metrics = &self.metrics;
2020-04-13 16:39:21 +00:00
let grids = &self.grids;
let bt = &self.bt;
let wb = &mut self.wb;
let eb = &mut self.eb;
2020-04-15 17:49:59 +00:00
let operators = &self.operators;
2020-04-13 16:39:21 +00:00
2020-04-16 18:40:22 +00:00
let rhs = move |fut: &mut [euler::Field], prev: &[euler::Field], time: Float| {
let prev_all = &prev;
2020-04-12 10:35:16 +00:00
pool.scope(|s| {
for (((((((fut, prev), wb), grid), metrics), op), bt), eb) in fut
2020-04-12 10:35:16 +00:00
.iter_mut()
.zip(prev.iter())
.zip(wb.iter_mut())
.zip(grids)
2020-04-12 10:35:16 +00:00
.zip(metrics.iter())
2020-04-15 17:49:59 +00:00
.zip(operators.iter())
.zip(bt.iter())
.zip(eb.iter_mut())
2020-04-02 21:36:20 +00:00
{
s.spawn(move |_| {
let bc = euler::boundary_extracts(prev_all, bt, prev, grid, eb, time);
match op.as_ref() {
Left(sbp) => {
euler::RHS_trad(&**sbp, fut, prev, metrics, &bc, &mut wb.0);
}
Right(uo) => {
euler::RHS_upwind(&**uo, fut, prev, metrics, &bc, &mut wb.0);
}
2020-04-12 22:00:27 +00:00
}
2020-04-15 17:49:59 +00:00
})
2020-04-02 21:36:20 +00:00
}
});
2020-04-12 10:35:16 +00:00
};
2020-04-12 22:00:27 +00:00
2020-04-12 10:35:16 +00:00
let mut k = self
.k
.iter_mut()
.map(|k| k.as_mut_slice())
.collect::<Vec<_>>();
2020-04-16 18:40:22 +00:00
sbp::integrate::integrate_multigrid::<sbp::integrate::Rk4, _, _>(
2020-04-12 10:35:16 +00:00
rhs,
&self.fnow,
&mut self.fnext,
&mut self.time,
dt,
&mut k,
pool,
);
std::mem::swap(&mut self.fnow, &mut self.fnext);
2020-04-02 21:36:20 +00:00
}
2020-05-03 18:45:27 +00:00
/// Suggested maximum dt for this problem
fn max_dt(&self) -> Float {
2020-05-04 15:59:49 +00:00
let c_max = if self.operators.iter().any(|op| {
op.as_ref().either(
|op| op.is_h2xi() || op.is_h2eta(),
|op| op.is_h2xi() || op.is_h2eta(),
)
}) {
0.5
} else {
1.0
};
2020-05-03 18:45:27 +00:00
let mut max_dt: Float = Float::INFINITY;
for (field, metrics) in self.fnow.iter().zip(self.metrics.iter()) {
let nx = field.nx();
let ny = field.ny();
let rho = field.rho();
let rhou = field.rhou();
let rhov = field.rhov();
let mut max_u: Float = 0.0;
let mut max_v: Float = 0.0;
for ((((((rho, rhou), rhov), detj_dxi_dx), detj_dxi_dy), detj_deta_dx), detj_deta_dy) in
rho.iter()
.zip(rhou.iter())
.zip(rhov.iter())
.zip(metrics.detj_dxi_dx())
.zip(metrics.detj_dxi_dy())
.zip(metrics.detj_deta_dx())
.zip(metrics.detj_deta_dy())
{
let u = rhou / rho;
let v = rhov / rho;
let uhat: Float = detj_dxi_dx * u + detj_dxi_dy * v;
let vhat: Float = detj_deta_dx * u + detj_deta_dy * v;
max_u = max_u.max(uhat.abs());
max_v = max_v.max(vhat.abs());
}
let dx = 1.0 / nx as Float;
let dy = 1.0 / ny as Float;
let c_dt = Float::max(max_u / dx, max_v / dy);
max_dt = Float::min(max_dt, c_max / c_dt);
}
max_dt
}
2020-03-31 22:08:55 +00:00
}
2020-04-06 20:32:36 +00:00
2020-04-02 19:36:56 +00:00
#[derive(Debug, StructOpt)]
struct Options {
json: std::path::PathBuf,
2020-04-03 20:30:30 +00:00
/// Disable the progressbar
#[structopt(long)]
2020-04-02 20:32:07 +00:00
no_progressbar: bool,
2020-04-03 20:30:30 +00:00
/// Number of simultaneous threads
#[structopt(short, long)]
jobs: Option<Option<usize>>,
2020-04-04 20:14:15 +00:00
/// Name of output file
2020-04-10 09:53:37 +00:00
#[structopt(default_value = "output.hdf", long, short)]
2020-04-04 20:14:15 +00:00
output: std::path::PathBuf,
2020-04-07 21:25:19 +00:00
/// Number of outputs to save
#[structopt(long, short)]
number_of_outputs: Option<u64>,
2020-04-08 18:04:12 +00:00
/// Print the time to complete, taken in the compute loop
#[structopt(long)]
timings: bool,
/// Print error at the end of the run
#[structopt(long)]
error: bool,
2020-03-31 22:08:55 +00:00
}
fn main() {
2020-04-02 19:36:56 +00:00
let opt = Options::from_args();
let filecontents = std::fs::read_to_string(&opt.json).unwrap();
2020-03-31 22:08:55 +00:00
2020-09-03 21:49:45 +00:00
let config: parsing::Configuration = json5::from_str(&filecontents).unwrap();
2020-04-03 22:29:02 +00:00
2020-09-03 21:49:45 +00:00
let parsing::RuntimeConfiguration {
names,
grids,
bc: bt,
op: operators,
integration_time,
vortex: vortexparams,
} = config.to_runtime();
2020-03-31 22:08:55 +00:00
2020-04-15 21:58:39 +00:00
let mut sys = System::new(grids, bt, operators);
2020-04-22 21:59:06 +00:00
sys.vortex(0.0, &vortexparams);
2020-04-02 19:36:56 +00:00
2020-05-03 18:45:27 +00:00
let dt = sys.max_dt();
2020-04-02 20:32:07 +00:00
2020-04-04 20:14:15 +00:00
let ntime = (integration_time / dt).round() as u64;
2020-04-02 20:32:07 +00:00
let pool = {
2020-04-03 20:30:30 +00:00
let builder = rayon::ThreadPoolBuilder::new();
if let Some(j) = opt.jobs {
if let Some(j) = j {
builder.num_threads(j)
} else {
builder
}
2020-04-03 20:30:30 +00:00
} else {
builder.num_threads(1)
}
.build()
.unwrap()
2020-04-02 21:36:20 +00:00
};
2020-04-07 21:25:19 +00:00
let should_output = |itime| {
opt.number_of_outputs.map_or(false, |num_out| {
if num_out == 0 {
false
} else {
itime % (std::cmp::max(ntime / (num_out - 1), 1)) == 0
}
})
};
2020-04-22 18:47:26 +00:00
let output = File::create(&opt.output, sys.grids.as_slice(), names).unwrap();
2020-04-07 20:54:00 +00:00
let mut output = OutputThread::new(output);
2020-04-12 18:44:52 +00:00
let progressbar = progressbar(opt.no_progressbar, ntime);
2020-04-08 18:04:12 +00:00
let timer = if opt.timings {
Some(std::time::Instant::now())
} else {
None
};
2020-04-07 21:25:19 +00:00
for itime in 0..ntime {
if should_output(itime) {
output.add_timestep(itime, &sys.fnow);
}
2020-04-12 18:44:52 +00:00
progressbar.inc(1);
sys.advance(dt, &pool);
2020-04-01 20:37:01 +00:00
}
2020-04-12 18:44:52 +00:00
progressbar.finish_and_clear();
2020-04-01 20:37:01 +00:00
2020-04-08 18:04:12 +00:00
if let Some(timer) = timer {
let duration = timer.elapsed();
println!("Time elapsed: {} seconds", duration.as_secs_f64());
}
2020-04-07 20:54:00 +00:00
output.add_timestep(ntime, &sys.fnow);
if opt.error {
2020-04-11 13:19:34 +00:00
let time = ntime as Float * dt;
let mut e = 0.0;
2020-04-15 17:49:59 +00:00
for ((fmod, grid), op) in sys.fnow.iter().zip(&sys.grids).zip(&sys.operators) {
let mut fvort = fmod.clone();
2020-04-22 21:59:06 +00:00
fvort.vortex(grid.x(), grid.y(), time, &vortexparams);
2020-04-15 17:49:59 +00:00
let sbpop: &dyn SbpOperator2d = op.as_ref().either(|op| &**op, |uo| uo.as_sbp());
e += fmod.h2_err(&fvort, sbpop);
}
println!("Total error: {:e}", e);
}
2020-04-01 20:37:01 +00:00
}
2020-04-06 20:42:44 +00:00
fn progressbar(dummy: bool, ntime: u64) -> indicatif::ProgressBar {
if dummy {
indicatif::ProgressBar::hidden()
} else {
2020-04-12 18:44:52 +00:00
let progressbar = indicatif::ProgressBar::new(ntime);
progressbar.with_style(
2020-04-06 20:42:44 +00:00
indicatif::ProgressStyle::default_bar()
.template("{wide_bar:.cyan/blue} {pos}/{len} ({eta})"),
)
}
}