SummationByParts/sbp/examples/multigrid/bin.rs

607 lines
21 KiB
Rust

use sbp::utils::json_to_grids;
use sbp::*;
use structopt::StructOpt;
struct System<T: operators::UpwindOperator> {
fnow: Vec<euler::Field>,
fnext: Vec<euler::Field>,
wb: Vec<(
euler::Field,
euler::Field,
euler::Field,
euler::Field,
euler::Field,
euler::Field,
)>,
k: [Vec<euler::Field>; 4],
grids: Vec<grid::Grid>,
metrics: Vec<grid::Metrics<T>>,
bt: Vec<euler::BoundaryCharacteristics>,
eb: Vec<MaybeBoundary>,
time: Float,
}
impl<T: operators::UpwindOperator> System<T> {
fn new(grids: Vec<grid::Grid>, bt: Vec<euler::BoundaryCharacteristics>) -> Self {
let fnow = grids
.iter()
.map(|g| euler::Field::new(g.ny(), g.nx()))
.collect::<Vec<_>>();
let fnext = fnow.clone();
let wb = grids
.iter()
.map(|g| {
let f = euler::Field::new(g.ny(), g.nx());
(f.clone(), f.clone(), f.clone(), f.clone(), f.clone(), f)
})
.collect();
let k = [fnow.clone(), fnow.clone(), fnow.clone(), fnow.clone()];
let metrics = grids.iter().map(|g| g.metrics().unwrap()).collect();
let eb = bt
.iter()
.zip(&grids)
.map(|(bt, grid)| MaybeBoundary {
n: match bt.north {
euler::BoundaryCharacteristic::Vortex(_) => {
Some(ndarray::Array2::zeros((4, grid.nx())))
}
_ => None,
},
s: match bt.north {
euler::BoundaryCharacteristic::Vortex(_) => {
Some(ndarray::Array2::zeros((4, grid.nx())))
}
_ => None,
},
e: match bt.north {
euler::BoundaryCharacteristic::Vortex(_) => {
Some(ndarray::Array2::zeros((4, grid.ny())))
}
_ => None,
},
w: match bt.north {
euler::BoundaryCharacteristic::Vortex(_) => {
Some(ndarray::Array2::zeros((4, grid.ny())))
}
_ => None,
},
})
.collect();
Self {
fnow,
fnext,
k,
wb,
grids,
metrics,
bt,
eb,
time: 0.0,
}
}
fn vortex(&mut self, t: Float, vortex_params: euler::VortexParameters) {
for (f, g) in self.fnow.iter_mut().zip(&self.grids) {
f.vortex(g.x(), g.y(), t, vortex_params);
}
}
fn advance(&mut self, dt: Float) {
for i in 0.. {
let time;
let fnext;
match i {
0 => {
for (prev, fut) in self.fnow.iter().zip(self.fnext.iter_mut()) {
fut.assign(prev);
}
fnext = &mut self.k[i];
time = self.time;
}
1 | 2 => {
for ((prev, fut), k) in self
.fnow
.iter()
.zip(self.fnext.iter_mut())
.zip(&self.k[i - 1])
{
fut.assign(prev);
fut.scaled_add(1.0 / 2.0 * dt, k);
}
fnext = &mut self.k[i];
time = self.time + dt / 2.0;
}
3 => {
for ((prev, fut), k) in self
.fnow
.iter()
.zip(self.fnext.iter_mut())
.zip(&self.k[i - 1])
{
fut.assign(prev);
fut.scaled_add(dt, k);
}
fnext = &mut self.k[i];
time = self.time + dt;
}
4 => {
for (((((prev, fut), k0), k1), k2), k3) in self
.fnow
.iter()
.zip(self.fnext.iter_mut())
.zip(&self.k[0])
.zip(&self.k[1])
.zip(&self.k[2])
.zip(&self.k[3])
{
ndarray::Zip::from(&mut **fut)
.and(&**prev)
.and(&**k0)
.and(&**k1)
.and(&**k2)
.and(&**k3)
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
}
std::mem::swap(&mut self.fnext, &mut self.fnow);
self.time += dt;
return;
}
_ => {
unreachable!();
}
}
let fields = &self.fnext;
let bt = self
.bt
.iter()
.zip(&mut self.eb)
.zip(&self.grids)
.enumerate()
.map(|(i, ((bt, eb), grid))| euler::BoundaryTerms {
north: match bt.north {
euler::BoundaryCharacteristic::This => fields[i].south(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].south(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.n.as_mut().unwrap();
vortexify(field.view_mut(), grid.north(), v, time);
field.view()
}
},
south: match bt.south {
euler::BoundaryCharacteristic::This => fields[i].north(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].north(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.s.as_mut().unwrap();
vortexify(field.view_mut(), grid.south(), v, time);
field.view()
}
},
west: match bt.west {
euler::BoundaryCharacteristic::This => fields[i].east(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].east(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.w.as_mut().unwrap();
vortexify(field.view_mut(), grid.west(), v, time);
field.view()
}
},
east: match bt.east {
euler::BoundaryCharacteristic::This => fields[i].west(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].west(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.e.as_mut().unwrap();
vortexify(field.view_mut(), grid.east(), v, time);
field.view()
}
},
})
.collect::<Vec<_>>();
for ((((prev, fut), metrics), wb), bt) in fields
.iter()
.zip(fnext)
.zip(&self.metrics)
.zip(&mut self.wb)
.zip(bt)
{
euler::RHS_upwind(fut, prev, metrics, &bt, wb)
}
}
}
fn advance_parallel(&mut self, dt: Float, s: &rayon::ThreadPool) {
for i in 0.. {
let time;
match i {
0 => {
s.scope(|s| {
for (prev, fut) in self.fnow.iter().zip(self.fnext.iter_mut()) {
s.spawn(move |_| {
fut.assign(prev);
});
}
});
time = self.time;
}
1 | 2 => {
s.scope(|s| {
for ((prev, fut), k) in self
.fnow
.iter()
.zip(self.fnext.iter_mut())
.zip(&self.k[i - 1])
{
s.spawn(move |_| {
fut.assign(prev);
fut.scaled_add(1.0 / 2.0 * dt, k);
});
}
});
time = self.time + dt / 2.0;
}
3 => {
s.scope(|s| {
for ((prev, fut), k) in self
.fnow
.iter()
.zip(self.fnext.iter_mut())
.zip(&self.k[i - 1])
{
s.spawn(move |_| {
fut.assign(prev);
fut.scaled_add(dt, k);
});
}
});
time = self.time + dt;
}
4 => {
s.scope(|s| {
for (((((prev, fut), k0), k1), k2), k3) in self
.fnow
.iter()
.zip(self.fnext.iter_mut())
.zip(&self.k[0])
.zip(&self.k[1])
.zip(&self.k[2])
.zip(&self.k[3])
{
s.spawn(move |_| {
ndarray::Zip::from(&mut **fut)
.and(&**prev)
.and(&**k0)
.and(&**k1)
.and(&**k2)
.and(&**k3)
.apply(|y1, &y0, &k1, &k2, &k3, &k4| {
*y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
});
});
}
});
std::mem::swap(&mut self.fnext, &mut self.fnow);
self.time += dt;
return;
}
_ => {
unreachable!();
}
}
s.scope(|s| {
let fields = &self.fnext;
let bt = self
.bt
.iter()
.zip(&mut self.eb)
.zip(&self.grids)
.enumerate()
.map(|(i, ((bt, eb), grid))| euler::BoundaryTerms {
north: match bt.north {
euler::BoundaryCharacteristic::This => fields[i].south(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].south(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.n.as_mut().unwrap();
vortexify(field.view_mut(), grid.north(), v, time);
field.view()
}
},
south: match bt.south {
euler::BoundaryCharacteristic::This => fields[i].north(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].north(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.s.as_mut().unwrap();
vortexify(field.view_mut(), grid.south(), v, time);
field.view()
}
},
west: match bt.west {
euler::BoundaryCharacteristic::This => fields[i].east(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].east(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.w.as_mut().unwrap();
vortexify(field.view_mut(), grid.west(), v, time);
field.view()
}
},
east: match bt.east {
euler::BoundaryCharacteristic::This => fields[i].west(),
euler::BoundaryCharacteristic::Grid(g) => fields[g].west(),
euler::BoundaryCharacteristic::Vortex(v) => {
let field = eb.e.as_mut().unwrap();
vortexify(field.view_mut(), grid.east(), v, time);
field.view()
}
},
})
.collect::<Vec<_>>();
for ((((prev, fut), metrics), wb), bt) in fields
.iter()
.zip(&mut self.k[i])
.zip(&self.metrics)
.zip(&mut self.wb)
.zip(bt)
{
s.spawn(move |_| euler::RHS_upwind(fut, prev, metrics, &bt, wb));
}
});
}
}
}
#[derive(Debug, Clone)]
struct MaybeBoundary {
n: Option<ndarray::Array2<Float>>,
s: Option<ndarray::Array2<Float>>,
e: Option<ndarray::Array2<Float>>,
w: Option<ndarray::Array2<Float>>,
}
fn vortexify(
mut field: ndarray::ArrayViewMut2<Float>,
yx: (ndarray::ArrayView1<Float>, ndarray::ArrayView1<Float>),
v: euler::VortexParameters,
t: Float,
) {
let mut fiter = field.outer_iter_mut();
let (rho, rhou, rhov, e) = (
fiter.next().unwrap(),
fiter.next().unwrap(),
fiter.next().unwrap(),
fiter.next().unwrap(),
);
let (y, x) = yx;
euler::vortex(rho, rhou, rhov, e, x, y, t, v);
}
#[derive(Debug, StructOpt)]
struct Options {
json: std::path::PathBuf,
/// Disable the progressbar
#[structopt(long)]
no_progressbar: bool,
/// Number of simultaneous threads
#[structopt(short, long)]
jobs: Option<Option<usize>>,
/// Name of output file
#[structopt(default_value = "output")]
output: std::path::PathBuf,
/// Output on the legacy format
#[structopt(long)]
legacy: bool,
}
fn main() {
let opt = Options::from_args();
let filecontents = std::fs::read_to_string(&opt.json).unwrap();
let json = json::parse(&filecontents).unwrap();
let jgrids = json_to_grids(json["grids"].clone()).unwrap();
let vortexparams = utils::json_to_vortex(json["vortex"].clone());
let mut bt = Vec::with_capacity(jgrids.len());
let determine_bc = |dir| match dir {
Some(dir) => {
if dir == "vortex" {
euler::BoundaryCharacteristic::Vortex(vortexparams)
} else {
euler::BoundaryCharacteristic::Grid(
jgrids
.iter()
.position(|other| other.name.as_ref().map_or(false, |name| name == dir))
.unwrap(),
)
}
}
None => euler::BoundaryCharacteristic::This,
};
for grid in &jgrids {
bt.push(euler::BoundaryCharacteristics {
north: determine_bc(grid.dirn.as_ref()),
south: determine_bc(grid.dirs.as_ref()),
east: determine_bc(grid.dire.as_ref()),
west: determine_bc(grid.dirw.as_ref()),
});
}
let grids = jgrids.into_iter().map(|egrid| egrid.grid).collect();
let integration_time: Float = json["integration_time"].as_number().unwrap().into();
let mut sys = System::<sbp::operators::Upwind4>::new(grids, bt);
sys.vortex(0.0, vortexparams);
let max_n = {
let max_nx = sys.grids.iter().map(|g| g.nx()).max().unwrap();
let max_ny = sys.grids.iter().map(|g| g.ny()).max().unwrap();
std::cmp::max(max_nx, max_ny)
};
let dt = 0.2 / (max_n as Float);
let ntime = (integration_time / dt).round() as u64;
let pool = if let Some(j) = opt.jobs {
let builder = rayon::ThreadPoolBuilder::new();
let builder = if let Some(j) = j {
builder.num_threads(j)
} else {
builder
};
Some(builder.build().unwrap())
} else {
None
};
let output = if opt.legacy {
None
} else {
Some(create_hdf(&opt.output, sys.grids.as_slice()).unwrap())
};
if let Some(file) = output.as_ref() {
add_timestep_to_file(&file, 0, sys.fnow.as_slice()).unwrap();
}
let bar = if opt.no_progressbar {
indicatif::ProgressBar::hidden()
} else {
let bar = indicatif::ProgressBar::new(ntime as _);
bar.with_style(
indicatif::ProgressStyle::default_bar()
.template("{wide_bar:.cyan/blue} {pos}/{len} ({eta})"),
)
};
for _ in 0..ntime {
bar.inc(1);
if let Some(pool) = pool.as_ref() {
sys.advance_parallel(dt, &pool);
} else {
sys.advance(dt);
}
}
bar.finish();
if let Some(file) = output.as_ref() {
add_timestep_to_file(&file, ntime, sys.fnow.as_slice()).unwrap();
} else {
legacy_output(&opt.output, &sys);
}
}
fn legacy_output<T: sbp::operators::UpwindOperator, P: AsRef<std::path::Path>>(
path: &P,
sys: &System<T>,
) {
use std::io::prelude::*;
let file = std::fs::File::create(path).unwrap();
let mut file = std::io::BufWriter::new(file);
let ngrids = sys.grids.len();
file.write_all(&(ngrids as u32).to_le_bytes()).unwrap();
for (grid, s) in sys.grids.iter().zip(&sys.fnow) {
file.write_all(&(grid.ny() as u32).to_le_bytes()).unwrap();
file.write_all(&(grid.nx() as u32).to_le_bytes()).unwrap();
for x in grid.x().as_slice().unwrap() {
file.write_all(&(x.to_le_bytes())).unwrap();
}
for y in grid.y().as_slice().unwrap() {
file.write_all(&(y.to_le_bytes())).unwrap();
}
for rho in s.rho().as_slice().unwrap() {
file.write_all(&(rho.to_le_bytes())).unwrap();
}
for rhou in s.rhou().as_slice().unwrap() {
file.write_all(&(rhou.to_le_bytes())).unwrap();
}
for rhov in s.rhov().as_slice().unwrap() {
file.write_all(&(rhov.to_le_bytes())).unwrap();
}
for e in s.e().as_slice().unwrap() {
file.write_all(&(e.to_le_bytes())).unwrap();
}
}
}
fn create_hdf<P: AsRef<std::path::Path>>(
path: P,
grids: &[sbp::grid::Grid],
) -> Result<hdf5::File, Box<dyn std::error::Error>> {
let gzip = 7;
let file = hdf5::File::create(path.as_ref())?;
let _tds = file
.new_dataset::<u64>()
.resizable(true)
.chunk((1,))
.create("t", (0,))?;
for (i, grid) in grids.iter().enumerate() {
let g = file.create_group(&i.to_string())?;
g.link_soft("/t", "t").unwrap();
let add_dim = |name| {
g.new_dataset::<Float>()
.gzip(gzip)
.create(name, (grid.ny(), grid.nx()))
};
let xds = add_dim("x")?;
xds.write(grid.x())?;
let yds = add_dim("y")?;
yds.write(grid.y())?;
let add_var = |name| {
g.new_dataset::<Float>()
.gzip(gzip)
.chunk((1, grid.ny(), grid.nx()))
.resizable_idx(&[true, false, false])
.create(name, (0, grid.ny(), grid.nx()))
};
add_var("rho")?;
add_var("rhou")?;
add_var("rhov")?;
add_var("e")?;
}
Ok(file)
}
fn add_timestep_to_file(
file: &hdf5::File,
t: u64,
fields: &[euler::Field],
) -> Result<(), Box<dyn std::error::Error>> {
let tds = file.dataset("t")?;
let tpos = tds.size();
tds.resize((tpos + 1,))?;
tds.write_slice(&[t], ndarray::s![tpos..tpos + 1])?;
for (i, fnow) in fields.iter().enumerate() {
let g = file.group(&i.to_string())?;
let (tpos, ny, nx) = {
let ds = g.dataset("rho")?;
let shape = ds.shape();
(shape[0], shape[1], shape[2])
};
let rhods = g.dataset("rho")?;
let rhouds = g.dataset("rhou")?;
let rhovds = g.dataset("rhov")?;
let eds = g.dataset("e")?;
let (rho, rhou, rhov, e) = fnow.components();
rhods.resize((tpos + 1, ny, nx))?;
rhods.write_slice(rho, ndarray::s![tpos, .., ..])?;
rhouds.resize((tpos + 1, ny, nx))?;
rhouds.write_slice(rhou, ndarray::s![tpos, .., ..])?;
rhovds.resize((tpos + 1, ny, nx))?;
rhovds.write_slice(rhov, ndarray::s![tpos, .., ..])?;
eds.resize((tpos + 1, ny, nx))?;
eds.write_slice(e, ndarray::s![tpos, .., ..])?;
}
Ok(())
}