SummationByParts/sbp/src/operators.rs

159 lines
4.4 KiB
Rust

#![allow(clippy::excessive_precision)]
#![allow(clippy::unreadable_literal)]
use crate::Float;
use ndarray::{ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2};
pub trait SbpOperator: Send + Sync {
fn diff1d(prev: ArrayView1<Float>, fut: ArrayViewMut1<Float>);
fn diffxi(prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>) {
assert_eq!(prev.shape(), fut.shape());
for (r0, r1) in prev.outer_iter().zip(fut.outer_iter_mut()) {
Self::diff1d(r0, r1);
}
}
fn diffeta(prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
Self::diffxi(prev.reversed_axes(), fut.reversed_axes())
}
fn h() -> &'static [Float];
fn is_h2() -> bool {
false
}
}
pub trait UpwindOperator: SbpOperator {
fn diss1d(prev: ArrayView1<Float>, fut: ArrayViewMut1<Float>);
fn dissxi(prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>) {
assert_eq!(prev.shape(), fut.shape());
for (r0, r1) in prev.outer_iter().zip(fut.outer_iter_mut()) {
Self::diss1d(r0, r1);
}
}
fn disseta(prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
Self::dissxi(prev.reversed_axes(), fut.reversed_axes())
}
}
pub trait InterpolationOperator: Send + Sync {
fn fine2coarse(&self, fine: ArrayView1<Float>, coarse: ArrayViewMut1<Float>);
fn coarse2fine(&self, coarse: ArrayView1<Float>, fine: ArrayViewMut1<Float>);
}
#[inline(always)]
pub(crate) fn diff_op_1d(
block: ndarray::ArrayView2<Float>,
diag: ndarray::ArrayView1<Float>,
symmetric: bool,
is_h2: bool,
prev: ArrayView1<Float>,
mut fut: ArrayViewMut1<Float>,
) {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[0];
assert!(nx >= 2 * block.len_of(ndarray::Axis(0)));
let dx = if is_h2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
let first_elems = prev.slice(::ndarray::s!(..block.len_of(::ndarray::Axis(1))));
for (bl, f) in block.outer_iter().zip(&mut fut) {
let diff = first_elems.dot(&bl);
*f = diff * idx;
}
// The window needs to be aligned to the diagonal elements,
// based on the block size
let window_elems_to_skip = block.len_of(::ndarray::Axis(0)) - ((diag.len() - 1) / 2);
for (window, f) in prev
.windows(diag.len())
.into_iter()
.skip(window_elems_to_skip)
.zip(fut.iter_mut().skip(block.len_of(::ndarray::Axis(0))))
.take(nx - 2 * block.len_of(::ndarray::Axis(0)))
{
let diff = diag.dot(&window);
*f = diff * idx;
}
let last_elems = prev.slice(::ndarray::s!(nx - block.len_of(::ndarray::Axis(1))..;-1));
for (bl, f) in block
.outer_iter()
.zip(&mut fut.slice_mut(::ndarray::s![nx - block.len_of(::ndarray::Axis(0))..;-1]))
{
let diff = if symmetric {
bl.dot(&last_elems)
} else {
-bl.dot(&last_elems)
};
*f = diff * idx;
}
}
mod upwind4;
pub use upwind4::Upwind4;
mod upwind9;
pub use upwind9::Upwind9;
mod upwind4h2;
pub use upwind4h2::Upwind4h2;
mod upwind9h2;
pub use upwind9h2::Upwind9h2;
mod traditional4;
pub use traditional4::SBP4;
mod traditional8;
pub use traditional8::SBP8;
mod interpolation;
pub use interpolation::Interpolation4;
#[cfg(test)]
pub(crate) mod testing {
use super::*;
use ndarray::prelude::*;
pub(crate) fn grid_eval<F: Fn(Float, Float) -> Float>(
n: (usize, usize),
f: F,
) -> Array2<Float> {
let nx = n.1;
let dx = 1.0 / (nx - 1) as Float;
let ny = n.0;
let dy = 1.0 / (ny - 1) as Float;
Array2::from_shape_fn(n, |(j, i)| {
let x = dx * i as Float;
let y = dy * j as Float;
f(x, y)
})
}
pub(crate) fn check_operator_on<SBP, F, FX, FY>(
n: (usize, usize),
f: F,
dfdx: FX,
dfdy: FY,
eps: Float,
) where
SBP: SbpOperator,
F: Fn(Float, Float) -> Float,
FX: Fn(Float, Float) -> Float,
FY: Fn(Float, Float) -> Float,
{
let mut y = Array2::zeros(n);
let x = grid_eval(n, f);
y.fill(0.0);
SBP::diffxi(x.view(), y.view_mut());
approx::assert_abs_diff_eq!(&y, &grid_eval(n, dfdx), epsilon = eps);
y.fill(0.0);
SBP::diffeta(x.view(), y.view_mut());
approx::assert_abs_diff_eq!(&y, &grid_eval(n, dfdy), epsilon = eps);
}
}