SummationByParts/multigrid/src/main.rs

262 lines
7.7 KiB
Rust

#![feature(str_strip)]
use either::*;
use structopt::StructOpt;
use sbp::operators::{SbpOperator2d, UpwindOperator2d};
use sbp::*;
mod parsing;
use parsing::{json_to_grids, json_to_vortex};
mod file;
use file::*;
pub(crate) type DiffOp = Either<Box<dyn SbpOperator2d>, Box<dyn UpwindOperator2d>>;
struct System {
fnow: Vec<euler::Field>,
fnext: Vec<euler::Field>,
wb: Vec<euler::WorkBuffers>,
k: [Vec<euler::Field>; 4],
grids: Vec<grid::Grid>,
metrics: Vec<grid::Metrics>,
bt: Vec<euler::BoundaryCharacteristics>,
eb: Vec<euler::BoundaryStorage>,
time: Float,
operators: Vec<DiffOp>,
}
impl System {
fn new(
grids: Vec<grid::Grid>,
bt: Vec<euler::BoundaryCharacteristics>,
operators: Vec<DiffOp>,
) -> Self {
let fnow = grids
.iter()
.map(|g| euler::Field::new(g.ny(), g.nx()))
.collect::<Vec<_>>();
let fnext = fnow.clone();
let wb = grids
.iter()
.map(|g| euler::WorkBuffers::new(g.ny(), g.nx()))
.collect();
let k = [fnow.clone(), fnow.clone(), fnow.clone(), fnow.clone()];
let metrics = grids
.iter()
.zip(&operators)
.map(|(g, op)| {
let sbpop: &dyn SbpOperator2d = op.as_ref().either(|op| &**op, |uo| uo.as_sbp());
g.metrics(sbpop).unwrap()
})
.collect::<Vec<_>>();
let eb = bt
.iter()
.zip(&grids)
.map(|(bt, grid)| euler::BoundaryStorage::new(bt, grid))
.collect();
Self {
fnow,
fnext,
k,
wb,
grids,
metrics,
bt,
eb,
time: 0.0,
operators,
}
}
fn vortex(&mut self, t: Float, vortex_params: &euler::VortexParameters) {
for (f, g) in self.fnow.iter_mut().zip(&self.grids) {
f.vortex(g.x(), g.y(), t, &vortex_params);
}
}
fn advance(&mut self, dt: Float, pool: &rayon::ThreadPool) {
let metrics = &self.metrics;
let grids = &self.grids;
let bt = &self.bt;
let wb = &mut self.wb;
let eb = &mut self.eb;
let operators = &self.operators;
let rhs = move |fut: &mut [euler::Field], prev: &[euler::Field], time: Float| {
let prev_all = &prev;
pool.scope(|s| {
for (((((((fut, prev), wb), grid), metrics), op), bt), eb) in fut
.iter_mut()
.zip(prev.iter())
.zip(wb.iter_mut())
.zip(grids)
.zip(metrics.iter())
.zip(operators.iter())
.zip(bt.iter())
.zip(eb.iter_mut())
{
s.spawn(move |_| {
let bc = euler::boundary_extracts(prev_all, bt, prev, grid, eb, time);
match op.as_ref() {
Left(sbp) => {
euler::RHS_trad(&**sbp, fut, prev, metrics, &bc, &mut wb.0);
}
Right(uo) => {
euler::RHS_upwind(&**uo, fut, prev, metrics, &bc, &mut wb.0);
}
}
})
}
});
};
let mut k = self
.k
.iter_mut()
.map(|k| k.as_mut_slice())
.collect::<Vec<_>>();
sbp::integrate::integrate_multigrid::<sbp::integrate::Rk4, _, _>(
rhs,
&self.fnow,
&mut self.fnext,
&mut self.time,
dt,
&mut k,
pool,
);
std::mem::swap(&mut self.fnow, &mut self.fnext);
}
}
#[derive(Debug, StructOpt)]
struct Options {
json: std::path::PathBuf,
/// Disable the progressbar
#[structopt(long)]
no_progressbar: bool,
/// Number of simultaneous threads
#[structopt(short, long)]
jobs: Option<Option<usize>>,
/// Name of output file
#[structopt(default_value = "output.hdf", long, short)]
output: std::path::PathBuf,
/// Number of outputs to save
#[structopt(long, short)]
number_of_outputs: Option<u64>,
/// Print the time to complete, taken in the compute loop
#[structopt(long)]
timings: bool,
/// Print error at the end of the run
#[structopt(long)]
error: bool,
}
fn main() {
let opt = Options::from_args();
let filecontents = std::fs::read_to_string(&opt.json).unwrap();
let json = json::parse(&filecontents).unwrap();
let vortexparams = json_to_vortex(json["vortex"].clone());
let (names, grids, bt, operators) = json_to_grids(json["grids"].clone(), vortexparams.clone());
let integration_time: Float = json["integration_time"].as_number().unwrap().into();
let mut sys = System::new(grids, bt, operators);
sys.vortex(0.0, &vortexparams);
let max_n = {
let max_nx = sys.grids.iter().map(|g| g.nx()).max().unwrap();
let max_ny = sys.grids.iter().map(|g| g.ny()).max().unwrap();
std::cmp::max(max_nx, max_ny)
};
// Add a robust method for determining CFL, use for example the maximum speed of the initial
// field along with \delta x / \delta y
// U_max = max(rhou/u, rhov/v)
// This requires scaling with the determinant to obtain the "true" speed in computational
// space
// CFL = 0.2
// \delta t = CFL min(\delta x, \delta y) / U_max
let dt = 0.02 / (max_n as Float);
let ntime = (integration_time / dt).round() as u64;
let pool = {
let builder = rayon::ThreadPoolBuilder::new();
if let Some(j) = opt.jobs {
if let Some(j) = j {
builder.num_threads(j)
} else {
builder
}
} else {
builder.num_threads(1)
}
.build()
.unwrap()
};
let should_output = |itime| {
opt.number_of_outputs.map_or(false, |num_out| {
if num_out == 0 {
false
} else {
itime % (std::cmp::max(ntime / (num_out - 1), 1)) == 0
}
})
};
let output = File::create(&opt.output, sys.grids.as_slice(), names).unwrap();
let mut output = OutputThread::new(output);
let progressbar = progressbar(opt.no_progressbar, ntime);
let timer = if opt.timings {
Some(std::time::Instant::now())
} else {
None
};
for itime in 0..ntime {
if should_output(itime) {
output.add_timestep(itime, &sys.fnow);
}
progressbar.inc(1);
sys.advance(dt, &pool);
}
progressbar.finish_and_clear();
if let Some(timer) = timer {
let duration = timer.elapsed();
println!("Time elapsed: {} seconds", duration.as_secs_f64());
}
output.add_timestep(ntime, &sys.fnow);
if opt.error {
let time = ntime as Float * dt;
let mut e = 0.0;
for ((fmod, grid), op) in sys.fnow.iter().zip(&sys.grids).zip(&sys.operators) {
let mut fvort = fmod.clone();
fvort.vortex(grid.x(), grid.y(), time, &vortexparams);
let sbpop: &dyn SbpOperator2d = op.as_ref().either(|op| &**op, |uo| uo.as_sbp());
e += fmod.h2_err(&fvort, sbpop);
}
println!("Total error: {:e}", e);
}
}
fn progressbar(dummy: bool, ntime: u64) -> indicatif::ProgressBar {
if dummy {
indicatif::ProgressBar::hidden()
} else {
let progressbar = indicatif::ProgressBar::new(ntime);
progressbar.with_style(
indicatif::ProgressStyle::default_bar()
.template("{wide_bar:.cyan/blue} {pos}/{len} ({eta})"),
)
}
}