373 lines
11 KiB
Rust
373 lines
11 KiB
Rust
//! Integration of explicit PDEs using different Butcher Tableaus
|
|
//!
|
|
//! Integration can be performed on all systems that can be represented
|
|
//! as using a transform into an [`ndarray::ArrayView`] for both the state
|
|
//! and the state difference.
|
|
//!
|
|
//! The integration functions are memory efficient, and relies
|
|
//! on the `k` parameter to hold the system state differences.
|
|
//! This parameter is tied to the Butcher Tableau
|
|
|
|
use float::Float;
|
|
|
|
/// The Butcher Tableau, with the state transitions described as
|
|
/// [on wikipedia](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#Explicit_Runge%E2%80%93Kutta_methods).
|
|
pub trait ButcherTableau {
|
|
/// This bound should not be overridden
|
|
const S: usize = Self::B.len();
|
|
/// Only the lower triangle will be used (explicit integration)
|
|
const A: &'static [&'static [Float]];
|
|
const B: &'static [Float];
|
|
const C: &'static [Float];
|
|
}
|
|
|
|
pub trait EmbeddedButcherTableau: ButcherTableau {
|
|
const BSTAR: &'static [Float];
|
|
}
|
|
|
|
pub struct Rk4;
|
|
impl ButcherTableau for Rk4 {
|
|
const A: &'static [&'static [Float]] = &[&[0.5], &[0.0, 0.5], &[0.0, 0.0, 1.0]];
|
|
const B: &'static [Float] = &[1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0];
|
|
const C: &'static [Float] = &[0.5, 0.5, 1.0];
|
|
}
|
|
|
|
pub struct Rk4_38;
|
|
impl ButcherTableau for Rk4_38 {
|
|
const A: &'static [&'static [Float]] = &[&[1.0 / 3.0], &[-1.0 / 3.0, 1.0], &[1.0, -1.0, 1.0]];
|
|
const B: &'static [Float] = &[1.0 / 8.0, 3.0 / 8.0, 3.0 / 8.0, 1.0 / 8.0];
|
|
const C: &'static [Float] = &[1.0 / 3.0, 2.0 / 3.0, 1.0];
|
|
}
|
|
|
|
pub struct EulerMethod;
|
|
impl ButcherTableau for EulerMethod {
|
|
const A: &'static [&'static [Float]] = &[&[]];
|
|
const B: &'static [Float] = &[1.0];
|
|
const C: &'static [Float] = &[];
|
|
}
|
|
|
|
pub struct MidpointMethod;
|
|
impl ButcherTableau for MidpointMethod {
|
|
const A: &'static [&'static [Float]] = &[&[0.5]];
|
|
const B: &'static [Float] = &[0.0, 1.0];
|
|
const C: &'static [Float] = &[1.0 / 2.0];
|
|
}
|
|
|
|
/// Bit excessive...
|
|
#[allow(clippy::excessive_precision)]
|
|
#[allow(clippy::unreadable_literal)]
|
|
const SQRT_5: Float = 2.236067977499789696409173668731276235440618359611525724270897245410520925637804899414414408378782275;
|
|
pub struct Rk6;
|
|
impl ButcherTableau for Rk6 {
|
|
const A: &'static [&'static [Float]] = &[
|
|
&[4.0 / 7.0],
|
|
&[115.0 / 112.0, -5.0 / 16.0],
|
|
&[589.0 / 630.0, 5.0 / 18.0, -16.0 / 45.0],
|
|
&[
|
|
229.0 / 1200.0 - 29.0 / 6000.0 * SQRT_5,
|
|
119.0 / 240.0 - 187.0 / 1200.0 * SQRT_5,
|
|
-14.0 / 75.0 + 34.0 / 375.0 * SQRT_5,
|
|
-3.0 / 100.0 * SQRT_5,
|
|
],
|
|
&[
|
|
71.0 / 2400.0 - 587.0 / 12000.0 * SQRT_5,
|
|
187.0 / 480.0 - 391.0 / 2400.0 * SQRT_5,
|
|
-38.0 / 75.0 + 26.0 / 375.0 * SQRT_5,
|
|
27.0 / 80.0 - 3.0 / 400.0 * SQRT_5,
|
|
(1.0 + SQRT_5) / 4.0,
|
|
],
|
|
&[
|
|
-49.0 / 480.0 + 43.0 / 160.0 * SQRT_5,
|
|
-425.0 / 96.0 + 51.0 / 32.0 * SQRT_5,
|
|
52.0 / 15.0 - 4.0 / 5.0 * SQRT_5,
|
|
-27.0 / 16.0 + 3.0 / 16.0 * SQRT_5,
|
|
5.0 / 4.0 - 3.0 / 4.0 * SQRT_5,
|
|
5.0 / 2.0 - 1.0 / 2.0 * SQRT_5,
|
|
],
|
|
];
|
|
const B: &'static [Float] = &[
|
|
1.0 / 12.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
5.0 / 12.0,
|
|
5.0 / 12.0,
|
|
1.0 / 12.0,
|
|
];
|
|
const C: &'static [Float] = &[
|
|
4.0 / 7.0,
|
|
5.0 / 7.0,
|
|
6.0 / 7.0,
|
|
(5.0 - SQRT_5) / 10.0,
|
|
(5.0 + SQRT_5) / 10.0,
|
|
1.0,
|
|
];
|
|
}
|
|
|
|
pub struct Fehlberg;
|
|
|
|
impl ButcherTableau for Fehlberg {
|
|
#[rustfmt::skip]
|
|
const A: &'static [&'static [Float]] = &[
|
|
&[1.0 / 4.0],
|
|
&[3.0 / 32.0, 9.0 / 32.0],
|
|
&[1932.0 / 2197.0, -7200.0 / 2197.0, 7296.0 / 2197.0],
|
|
&[439.0 / 216.0, -8.0, 3680.0 / 513.0, -845.0 / 4104.0],
|
|
&[-8.0 / 27.0, 2.0, -3544.0 / 2565.0, 1859.0 / 4104.0, -11.0 / 40.0],
|
|
];
|
|
#[rustfmt::skip]
|
|
const B: &'static [Float] = &[
|
|
16.0 / 135.0, 0.0, 6656.0 / 12825.0, 28561.0 / 56430.0, -9.0 / 50.0, 2.0 / 55.0,
|
|
];
|
|
const C: &'static [Float] = &[0.0, 1.0 / 4.0, 3.0 / 8.0, 12.0 / 13.0, 1.0, 1.0 / 2.0];
|
|
}
|
|
|
|
impl EmbeddedButcherTableau for Fehlberg {
|
|
const BSTAR: &'static [Float] = &[
|
|
25.0 / 216.0,
|
|
0.0,
|
|
1408.0 / 2565.0,
|
|
2197.0 / 4104.0,
|
|
-1.0 / 5.0,
|
|
0.0,
|
|
];
|
|
}
|
|
|
|
pub struct BogackiShampine;
|
|
|
|
impl ButcherTableau for BogackiShampine {
|
|
const A: &'static [&'static [Float]] = &[
|
|
&[1.0 / 2.0],
|
|
&[0.0, 3.0 / 4.0],
|
|
&[2.0 / 9.0, 1.0 / 3.0, 4.0 / 9.0],
|
|
];
|
|
const B: &'static [Float] = &[2.0 / 9.0, 1.0 / 3.0, 4.0 / 9.0, 0.0];
|
|
const C: &'static [Float] = &[0.0, 1.0 / 2.0, 3.0 / 4.0, 1.0];
|
|
}
|
|
|
|
impl EmbeddedButcherTableau for BogackiShampine {
|
|
const BSTAR: &'static [Float] = &[7.0 / 24.0, 1.0 / 4.0, 1.0 / 3.0, 1.0 / 8.0];
|
|
}
|
|
|
|
pub trait Integrable {
|
|
type State;
|
|
type Diff;
|
|
|
|
fn assign(s: &mut Self::State, o: &Self::State);
|
|
fn scaled_add(s: &mut Self::State, o: &Self::Diff, scale: Float);
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
/// Integrates using the [`ButcherTableau`] specified. `rhs` should be the result
|
|
/// of the right hand side of $u_t = rhs$
|
|
///
|
|
/// rhs takes the old state and the current time, and outputs the state difference
|
|
/// in the first parameter
|
|
///
|
|
/// Should be called as
|
|
/// ```rust,ignore
|
|
/// integrate::<Rk4, System, _>(...)
|
|
/// ```
|
|
pub fn integrate<BTableau: ButcherTableau, F: Integrable, RHS>(
|
|
mut rhs: RHS,
|
|
prev: &F::State,
|
|
fut: &mut F::State,
|
|
time: &mut Float,
|
|
dt: Float,
|
|
k: &mut [F::Diff],
|
|
) where
|
|
RHS: FnMut(&mut F::Diff, &F::State, Float),
|
|
{
|
|
assert!(k.len() >= BTableau::S);
|
|
|
|
for i in 0.. {
|
|
let simtime;
|
|
match i {
|
|
0 => {
|
|
F::assign(fut, prev);
|
|
simtime = *time;
|
|
}
|
|
i if i < BTableau::S => {
|
|
F::assign(fut, prev);
|
|
for (&a, k) in BTableau::A[i - 1].iter().zip(k.iter()) {
|
|
if a == 0.0 {
|
|
continue;
|
|
}
|
|
F::scaled_add(fut, k, a * dt);
|
|
}
|
|
simtime = *time + dt * BTableau::C[i - 1];
|
|
}
|
|
_ if i == BTableau::S => {
|
|
F::assign(fut, prev);
|
|
for (&b, k) in BTableau::B.iter().zip(k.iter()) {
|
|
if b == 0.0 {
|
|
continue;
|
|
}
|
|
F::scaled_add(fut, k, b * dt);
|
|
}
|
|
*time += dt;
|
|
return;
|
|
}
|
|
_ => {
|
|
unreachable!();
|
|
}
|
|
};
|
|
|
|
rhs(&mut k[i], &fut, simtime);
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
/// Integrate using an [`EmbeddedButcherTableau`], else similar to [`integrate`]
|
|
///
|
|
/// This produces two results, the most accurate result in `fut`, and the less accurate
|
|
/// result in `fut2`. This can be used for convergence testing and adaptive timesteps.
|
|
pub fn integrate_embedded_rk<BTableau: EmbeddedButcherTableau, F: Integrable, RHS>(
|
|
rhs: RHS,
|
|
prev: &F::State,
|
|
fut: &mut F::State,
|
|
fut2: &mut F::State,
|
|
time: &mut Float,
|
|
dt: Float,
|
|
k: &mut [F::Diff],
|
|
) where
|
|
RHS: FnMut(&mut F::Diff, &F::State, Float),
|
|
{
|
|
integrate::<BTableau, F, RHS>(rhs, prev, fut, time, dt, k);
|
|
F::assign(fut2, prev);
|
|
for (&b, k) in BTableau::BSTAR.iter().zip(k.iter()) {
|
|
if b == 0.0 {
|
|
continue;
|
|
}
|
|
F::scaled_add(fut2, k, b * dt);
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "rayon")]
|
|
#[allow(clippy::too_many_arguments)]
|
|
/// Integrates a multigrid problem, much the same as [`integrate`],
|
|
/// using a `rayon` threadpool for parallelisation.
|
|
///
|
|
/// note that `rhs` accepts the full system state, and is responsible
|
|
/// for computing the full state difference.
|
|
/// `rhs` can be a mutable closure, so buffers can be used
|
|
/// and mutated inside the closure.
|
|
///
|
|
/// This function requires the `rayon` feature, and is not callable in
|
|
/// a `wasm` context.
|
|
pub fn integrate_multigrid<BTableau: ButcherTableau, F: Integrable, RHS>(
|
|
mut rhs: RHS,
|
|
prev: &[F::State],
|
|
fut: &mut [F::State],
|
|
time: &mut Float,
|
|
dt: Float,
|
|
k: &mut [&mut [F::Diff]],
|
|
|
|
pool: &rayon::ThreadPool,
|
|
) where
|
|
RHS: FnMut(&mut [F::Diff], &[F::State], Float),
|
|
F::State: Send + Sync,
|
|
F::Diff: Send + Sync,
|
|
{
|
|
for i in 0.. {
|
|
let simtime;
|
|
match i {
|
|
0 => {
|
|
pool.scope(|s| {
|
|
assert!(k.len() >= BTableau::S);
|
|
for (prev, fut) in prev.iter().zip(fut.iter_mut()) {
|
|
s.spawn(move |_| {
|
|
F::assign(fut, prev);
|
|
});
|
|
}
|
|
});
|
|
simtime = *time;
|
|
}
|
|
i if i < BTableau::S => {
|
|
pool.scope(|s| {
|
|
for (ig, (prev, fut)) in prev.iter().zip(fut.iter_mut()).enumerate() {
|
|
let k = &k;
|
|
s.spawn(move |_| {
|
|
F::assign(fut, prev);
|
|
for (ik, &a) in BTableau::A[i - 1].iter().enumerate() {
|
|
if a == 0.0 {
|
|
continue;
|
|
}
|
|
F::scaled_add(fut, &k[ik][ig], a * dt);
|
|
}
|
|
});
|
|
}
|
|
});
|
|
simtime = *time + dt * BTableau::C[i - 1];
|
|
}
|
|
_ if i == BTableau::S => {
|
|
pool.scope(|s| {
|
|
for (ig, (prev, fut)) in prev.iter().zip(fut.iter_mut()).enumerate() {
|
|
let k = &k;
|
|
s.spawn(move |_| {
|
|
F::assign(fut, prev);
|
|
for (ik, &b) in BTableau::B.iter().enumerate() {
|
|
if b == 0.0 {
|
|
continue;
|
|
}
|
|
F::scaled_add(fut, &k[ik][ig], b * dt);
|
|
}
|
|
});
|
|
}
|
|
});
|
|
*time += dt;
|
|
return;
|
|
}
|
|
_ => {
|
|
unreachable!();
|
|
}
|
|
};
|
|
|
|
rhs(&mut k[i], &fut, simtime);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
/// Solving a second order PDE
|
|
fn ballistic() {
|
|
#[derive(Clone, Debug)]
|
|
struct Ball {
|
|
z: Float,
|
|
v: Float,
|
|
}
|
|
impl Integrable for Ball {
|
|
type State = Ball;
|
|
type Diff = (Float, Float);
|
|
fn assign(s: &mut Self::State, o: &Self::State) {
|
|
s.z = o.z;
|
|
s.v = o.v;
|
|
}
|
|
fn scaled_add(s: &mut Self::State, o: &Self::Diff, sc: Float) {
|
|
s.z += o.0 * sc;
|
|
s.v += o.1 * sc;
|
|
}
|
|
}
|
|
|
|
let mut t = 0.0;
|
|
let dt = 0.001;
|
|
let initial = Ball { z: 0.0, v: 10.0 };
|
|
let g = -9.81;
|
|
|
|
let mut k = [(0.0, 0.0); 4];
|
|
let gravity = |d: &mut (Float, Float), s: &Ball, _time: Float| {
|
|
d.1 = g;
|
|
d.0 = s.v
|
|
};
|
|
let mut next = initial.clone();
|
|
//while next.z >= 0.0 {
|
|
while t < 1.0 {
|
|
let mut next2 = next.clone();
|
|
integrate::<EulerMethod, Ball, _>(gravity, &next, &mut next2, &mut t, dt, &mut k);
|
|
std::mem::swap(&mut next, &mut next2);
|
|
}
|
|
let expected_vel = initial.v + g * t;
|
|
assert!((next.v - expected_vel).abs() < 1e-3);
|
|
let expected_pos = initial.z + initial.v * t + g / 2.0 * t.powi(2);
|
|
assert!((next.z - expected_pos).abs() < 1e-2);
|
|
}
|