SummationByParts/maxwell/src/sparse.rs

297 lines
9.3 KiB
Rust

use super::Float;
use sbp::operators::{SbpOperator2d, UpwindOperator2d};
use sbp::utils::kronecker_product;
fn eye(n: usize) -> sprs::CsMat<Float> {
sprs::CsMat::eye(n)
}
/// Implicit version of the system
/// C u_{t+1} = u_t
pub fn implicit_matrix(rhs: sprs::CsMatView<Float>, dt: Float) -> sprs::CsMat<Float> {
let n = rhs.rows();
let f = rhs.map(|x| x * dt);
&eye(n) - &f
}
fn diagonal(values: &[Float]) -> sprs::CsMat<Float> {
let values = values.to_vec();
let indptr = (0..values.len() + 1).collect();
let indices = (0..values.len()).collect();
sprs::CsMat::new((values.len(), values.len()), indptr, indices, values)
}
pub struct Implicit {
pub(crate) rhs: sprs::CsMat<Float>,
/// Diagonal matrix
pub(crate) lhs: sprs::CsMat<Float>,
}
/// Assumes self boundaries
pub fn rhs_matrix(op: &dyn SbpOperator2d, grid: &super::Grid) -> Implicit {
let metrics = grid.metrics(op).unwrap();
let nx = grid.nx();
let ny = grid.ny();
let fluxes = {
let d1_xi = op.op_eta().diff_matrix(nx);
let d1_eta = op.op_xi().diff_matrix(ny);
let d1_xi = kronecker_product(eye(ny).view(), d1_xi.view());
let d1_eta = kronecker_product(d1_eta.view(), eye(nx).view());
let mut a_flux = sprs::CsMat::zero((3, 3));
a_flux.insert(1, 2, -1.0);
a_flux.insert(2, 1, -1.0);
let mut b_flux = sprs::CsMat::zero((3, 3));
b_flux.insert(0, 1, 1.0);
b_flux.insert(1, 0, 1.0);
let detj_dxi_dx = diagonal(metrics.detj_dxi_dx().as_slice().unwrap());
let detj_dxi_dx = &d1_xi * &detj_dxi_dx;
// Can multiply with the constant matrix after differentiation
let f_flux_dxi = kronecker_product(a_flux.view(), detj_dxi_dx.view());
let detj_dxi_dy = diagonal(metrics.detj_dxi_dy().as_slice().unwrap());
let detj_dxi_dy = &d1_xi * &detj_dxi_dy;
let f_flux_deta = kronecker_product(b_flux.view(), detj_dxi_dy.view());
let detj_deta_dx = diagonal(metrics.detj_deta_dx().as_slice().unwrap());
let detj_deta_dx = &d1_eta * &detj_deta_dx;
let g_flux_dxi = kronecker_product(a_flux.view(), detj_deta_dx.view());
let detj_deta_dy = diagonal(metrics.detj_deta_dy().as_slice().unwrap());
let detj_deta_dy = &d1_eta * &detj_deta_dy;
let g_flux_deta = kronecker_product(b_flux.view(), detj_deta_dy.view());
let f_flux = &f_flux_dxi + &f_flux_deta;
let g_flux = &g_flux_dxi + &g_flux_deta;
&f_flux + &g_flux
};
fn flux_matrix(
kx: ndarray::ArrayView2<Float>,
ky: ndarray::ArrayView2<Float>,
positive: bool,
) -> sprs::CsMat<Float> {
let mut r = &(&kx * &kx) + &(&ky * &ky);
r.map_inplace(|v| *v = v.sqrt());
let a00 = if positive {
&ky * &ky / (2.0 * &r)
} else {
-&ky * ky / (2.0 * &r)
};
let a00 = diagonal(a00.as_slice().unwrap());
let a01 = &ky / 2.0;
let a01 = diagonal(a01.as_slice().unwrap());
let a02 = &kx * &ky / (2.0 * &r);
let a02 = diagonal(a02.as_slice().unwrap());
let a10 = &a01;
let a11 = if positive { &r / 2.0 } else { -&r / 2.0 };
let a11 = diagonal(a11.as_slice().unwrap());
let a12 = -&kx / 2.0;
let a12 = diagonal(a12.as_slice().unwrap());
let a20 = &a02;
let a21 = &a12;
let a22 = if positive {
&kx * &kx / (2.0 * &r)
} else {
-&kx * kx / (2.0 * &r)
};
let a22 = diagonal(a22.as_slice().unwrap());
sprs::bmat(&[
[Some(a00.view()), Some(a01.view()), Some(a02.view())],
[Some(a10.view()), Some(a11.view()), Some(a12.view())],
[Some(a20.view()), Some(a21.view()), Some(a22.view())],
])
}
let e0 = |n| {
let mut e0 = sprs::CsMat::zero((n, 1));
e0.insert(0, 0, 1.0);
e0
};
let en = |n| {
let mut en = sprs::CsMat::zero((n, 1));
en.insert(n - 1, 0, 1.0);
en
};
let sat_west = {
// West boundary
let e0 = e0(nx);
let en = en(nx);
// Periodic => (e_0 - e_n)q => 0
let p = &e0 - &en;
// Forming the matrix of size (nx,nx)
let mat = &e0 * &p.transpose_view();
// Must be scaled by the h norm
let hi = op.op_xi().h_matrix(nx).map(|h| 1.0 / h);
let mat = &hi * &mat;
// Upscaling to (nx * ny, nx * ny)
let mat = kronecker_product(eye(ny).view(), mat.view());
let aminus = flux_matrix(metrics.detj_dxi_dx(), metrics.detj_dxi_dy(), false);
let mut sat = &aminus * &kronecker_product(eye(3).view(), mat.view());
let tau = 1.0;
// Scaling by tau
sat.map_inplace(|x| tau * x);
sat
};
let sat_east = {
// East boundary
let e0 = e0(nx);
let en = en(nx);
// Periodic => (e_0 - e_n) => 0
let p = &en - &e0;
// Forming the matrix of size (nx,nx)
let mat = &en * &p.transpose_view();
// Must be scaled by the h norm
let hi = op.op_xi().h_matrix(nx).map(|h| 1.0 / h);
let mat = &hi * &mat;
// Upscaling to (nx * ny, nx * ny)
let mat = kronecker_product(eye(ny).view(), mat.view());
let aplus = flux_matrix(metrics.detj_dxi_dx(), metrics.detj_dxi_dy(), true);
let mut sat = &aplus * &kronecker_product(eye(3).view(), mat.view());
let tau = -1.0;
// Scaling by tau
sat.map_inplace(|x| tau * x);
sat
};
let sat_south = {
// South boundary
let e0 = e0(ny);
let en = en(ny);
// Periodic => (e_0 - e_n) => 0
let p = &e0 - &en;
// Forming the matrix of size (ny,ny)
let mat = &e0 * &p.transpose_view();
// Must be scaled by the h norm
let hi = op.op_eta().h_matrix(ny).map(|h| 1.0 / h);
let mat = &hi * &mat;
// Upscaling to (nx * ny, nx * ny)
let mat = kronecker_product(mat.view(), eye(nx).view());
let bminus = flux_matrix(metrics.detj_deta_dx(), metrics.detj_deta_dy(), false);
let mut sat = &bminus * &kronecker_product(eye(3).view(), mat.view());
let tau = 1.0;
// Scaling by tau
sat.map_inplace(|x| tau * x);
sat
};
let sat_north = {
// North boundary
let e0 = e0(ny);
let en = en(ny);
// Periodic => (e_0 - e_n) => 0
let p = &en - &e0;
// Forming the matrix of size (ny,ny)
let mat = &en * &p.transpose_view();
// Must be scaled by the h norm
let hi = op.op_eta().h_matrix(ny).map(|h| 1.0 / h);
let mat = &hi * &mat;
// Upscaling to (nx * ny, nx * ny)
let mat = kronecker_product(mat.view(), eye(nx).view());
let bminus = flux_matrix(metrics.detj_deta_dx(), metrics.detj_deta_dy(), true);
let mut sat = &bminus * &kronecker_product(eye(3).view(), mat.view());
let tau = -1.0;
// Scaling by tau
sat.map_inplace(|x| tau * x);
sat
};
let rhs = &fluxes + &(&(&sat_west + &sat_east) + &(&sat_north + &sat_south));
Implicit {
rhs,
lhs: kronecker_product(
sprs::CsMat::eye(3).view(),
diagonal(metrics.detj().as_slice().unwrap()).view(),
),
}
}
/// RHS with some additional dissipation from the upwind operator
pub fn rhs_matrix_with_upwind_dissipation(
op: impl UpwindOperator2d + SbpOperator2d,
grid: &super::Grid,
) -> sprs::CsMat<Float> {
let rhs = rhs_matrix(&op, grid).rhs;
let metrics = grid.metrics(&op).unwrap();
let nx = grid.nx();
let ny = grid.ny();
let diss = |kx: ndarray::ArrayView2<Float>, ky: ndarray::ArrayView2<Float>| {
let r = &kx * &kx + &ky * &ky;
let s00 = &ky * &ky / &r;
let s00 = diagonal(s00.as_slice().unwrap());
let s02 = -&kx * ky / &r;
let s02 = diagonal(s02.as_slice().unwrap());
let s11 = diagonal(r.as_slice().unwrap());
let s20 = &s02;
let s22 = &kx * &kx / &r;
let s22 = diagonal(s22.as_slice().unwrap());
sprs::bmat(&[
[Some(s00.view()), None, Some(s02.view())],
[None, Some(s11.view()), None],
[Some(s20.view()), None, Some(s22.view())],
])
};
let diss_x = {
let diss_x = UpwindOperator2d::op_xi(&op).diss_matrix(nx);
let diss_x = kronecker_product(eye(ny).view(), diss_x.view());
let met = diss(metrics.detj_dxi_dx(), metrics.detj_dxi_dy());
&met * &kronecker_product(eye(3).view(), diss_x.view())
};
let diss_y = {
let diss_y = UpwindOperator2d::op_eta(&op).diss_matrix(ny);
let diss_y = kronecker_product(diss_y.view(), eye(nx).view());
let met = diss(metrics.detj_deta_dx(), metrics.detj_deta_dy());
&met * &kronecker_product(eye(3).view(), diss_y.view())
};
&rhs + &(&diss_x + &diss_y)
}
#[test]
fn creation() {
let ny = 16;
let nx = 170;
let x = ndarray::Array::from_shape_fn((ny, nx), |(_j, i)| i as Float / (nx - 1) as Float);
let y = ndarray::Array::from_shape_fn((ny, nx), |(j, _i)| j as Float / (ny - 1) as Float);
let op = &sbp::operators::Upwind4;
let grid = sbp::grid::Grid::new(x, y).unwrap();
let _rhs = rhs_matrix(op, &grid);
// let _lhs = implicit_matrix(rhs.view(), 1e-2);
let _rhs_upwind = rhs_matrix_with_upwind_dissipation(op, &grid);
}