SummationByParts/sbp/src/maxwell.rs

576 lines
16 KiB
Rust

use super::grid::Grid;
use super::integrate;
use super::operators::{SbpOperator, UpwindOperator};
use ndarray::azip;
use ndarray::prelude::*;
#[derive(Clone, Debug)]
pub struct Field(pub(crate) Array3<f32>);
impl std::ops::Deref for Field {
type Target = Array3<f32>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for Field {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl Field {
pub fn new(height: usize, width: usize) -> Self {
let field = Array3::zeros((3, height, width));
Self(field)
}
pub fn nx(&self) -> usize {
self.0.shape()[2]
}
pub fn ny(&self) -> usize {
self.0.shape()[1]
}
pub fn ex(&self) -> ArrayView2<f32> {
self.slice(s![0, .., ..])
}
pub fn hz(&self) -> ArrayView2<f32> {
self.slice(s![1, .., ..])
}
pub fn ey(&self) -> ArrayView2<f32> {
self.slice(s![2, .., ..])
}
pub fn ex_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![0, .., ..])
}
pub fn hz_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![1, .., ..])
}
pub fn ey_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![2, .., ..])
}
pub fn components_mut(
&mut self,
) -> (ArrayViewMut2<f32>, ArrayViewMut2<f32>, ArrayViewMut2<f32>) {
let mut iter = self.0.outer_iter_mut();
let ex = iter.next().unwrap();
let hz = iter.next().unwrap();
let ey = iter.next().unwrap();
assert_eq!(iter.next(), None);
(ex, hz, ey)
}
}
#[derive(Debug, Clone)]
pub struct System<SBP: SbpOperator> {
sys: (Field, Field),
wb: WorkBuffers,
grid: Grid<SBP>,
}
impl<SBP: SbpOperator> System<SBP> {
pub fn new(x: Array2<f32>, y: Array2<f32>) -> Self {
assert_eq!(x.shape(), y.shape());
let ny = x.shape()[0];
let nx = x.shape()[1];
let grid = Grid::new(x, y).unwrap();
Self {
sys: (Field::new(ny, nx), Field::new(ny, nx)),
grid,
wb: WorkBuffers::new(ny, nx),
}
}
pub fn field(&self) -> &Field {
&self.sys.0
}
pub fn set_gaussian(&mut self, x0: f32, y0: f32) {
let (ex, hz, ey) = self.sys.0.components_mut();
ndarray::azip!(
(ex in ex, hz in hz, ey in ey,
&x in &self.grid.x, &y in &self.grid.y)
{
*ex = 0.0;
*ey = 0.0;
*hz = gaussian(x, x0, y, y0)/32.0;
});
}
pub fn advance(&mut self, dt: f32) {
integrate::rk4(
RHS,
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
&mut self.wb.k,
&mut self.wb.tmp,
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
impl<UO: UpwindOperator> System<UO> {
/// Using artificial dissipation with the upwind operator
pub fn advance_upwind(&mut self, dt: f32) {
integrate::rk4(
RHS_upwind,
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
&mut self.wb.k,
&mut self.wb.tmp,
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 {
use std::f32;
let x = x - x0;
let y = y - y0;
let sigma = 0.05;
1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp()
}
#[allow(non_snake_case)]
/// Solving (Au)_x + (Bu)_y
/// with:
/// A B
/// [ 0, 0, 0] [ 0, 1, 0]
/// [ 0, 0, -1] [ 1, 0, 0]
/// [ 0, -1, 0] [ 0, 0, 0]
///
/// This flux is rotated by the grid metrics
/// (Au)_x + (Bu)_y = 1/J [
/// (J xi_x Au)_xi + (J eta_x Au)_eta
/// (J xi_y Bu)_xi + (J eta_y Bu)_eta
/// ]
/// where J is the grid determinant
///
/// This is used both in fluxes and SAT terms
fn RHS<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
fluxes(k, y, grid, tmp);
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
SAT_characteristics(k, y, grid, &boundaries);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
*k /= detj;
});
}
#[allow(non_snake_case)]
fn RHS_upwind<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
fluxes(k, y, grid, tmp);
dissipation(k, y, grid, tmp);
let boundaries = BoundaryTerms {
north: Boundary::This,
south: Boundary::This,
west: Boundary::This,
east: Boundary::This,
};
SAT_characteristics(k, y, grid, &boundaries);
azip!((k in &mut k.0,
&detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
*k /= detj;
});
}
fn fluxes<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
// ex = hz_y
{
ndarray::azip!((a in &mut tmp.0,
&dxi_dy in &grid.detj_dxi_dy,
&hz in &y.hz())
*a = dxi_dy * hz
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dy in &grid.detj_deta_dy,
&hz in &y.hz())
*b = deta_dy * hz
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.ex_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
{
// hz = -ey_x + ex_y
ndarray::azip!((a in &mut tmp.0,
&dxi_dx in &grid.detj_dxi_dx,
&dxi_dy in &grid.detj_dxi_dy,
&ex in &y.ex(),
&ey in &y.ey())
*a = dxi_dx * -ey + dxi_dy * ex
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&deta_dx in &grid.detj_deta_dx,
&deta_dy in &grid.detj_deta_dy,
&ex in &y.ex(),
&ey in &y.ey())
*b = deta_dx * -ey + deta_dy * ex
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
// ey = -hz_x
{
ndarray::azip!((a in &mut tmp.0,
&dxi_dx in &grid.detj_dxi_dx,
&hz in &y.hz())
*a = dxi_dx * -hz
);
SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
azip!((b in &mut tmp.2,
&deta_dx in &grid.detj_deta_dx,
&hz in &y.hz())
*b = deta_dx * -hz
);
SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
azip!((flux in &mut k.ey_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux = ax + by
);
}
}
fn dissipation<UO: UpwindOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
) {
// ex component
{
ndarray::azip!((a in &mut tmp.0,
&kx in &grid.detj_dxi_dx,
&ky in &grid.detj_dxi_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*a = ky*ky/r * ex + -kx*ky/r*ey;
});
UO::dissxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&kx in &grid.detj_deta_dx,
&ky in &grid.detj_deta_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*b = ky*ky/r * ex + -kx*ky/r*ey;
});
UO::disseta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.ex_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux += ax + by
);
}
// hz component
{
ndarray::azip!((a in &mut tmp.0,
&kx in &grid.detj_dxi_dx,
&ky in &grid.detj_dxi_dy,
&hz in &y.hz()) {
let r = f32::hypot(kx, ky);
*a = r * hz;
});
UO::dissxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&kx in &grid.detj_deta_dx,
&ky in &grid.detj_deta_dy,
&hz in &y.hz()) {
let r = f32::hypot(kx, ky);
*b = r * hz;
});
UO::disseta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux += ax + by
);
}
// ey
{
ndarray::azip!((a in &mut tmp.0,
&kx in &grid.detj_dxi_dx,
&ky in &grid.detj_dxi_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*a = -kx*ky/r * ex + kx*kx/r*ey;
});
UO::dissxi(tmp.0.view(), tmp.1.view_mut());
ndarray::azip!((b in &mut tmp.2,
&kx in &grid.detj_deta_dx,
&ky in &grid.detj_deta_dy,
&ex in &y.ex(),
&ey in &y.ey()) {
let r = f32::hypot(kx, ky);
*b = -kx*ky/r * ex + kx*kx/r*ey;
});
UO::disseta(tmp.2.view(), tmp.3.view_mut());
ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
*flux += ax + by
);
}
}
#[derive(Clone, Debug)]
pub enum Boundary {
This,
}
#[derive(Clone, Debug)]
pub struct BoundaryTerms {
pub north: Boundary,
pub south: Boundary,
pub east: Boundary,
pub west: Boundary,
}
#[allow(non_snake_case)]
/// Boundary conditions (SAT)
fn SAT_characteristics<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
boundaries: &BoundaryTerms,
) {
let ny = y.ny();
let nx = y.nx();
fn positive_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
let r = (kx * kx + ky * ky).sqrt();
[
[ky * ky / r / 2.0, ky / 2.0, -kx * ky / r / 2.0],
[ky / 2.0, r / 2.0, -kx / 2.0],
[-kx * ky / r / 2.0, -kx / 2.0, kx * kx / r / 2.0],
]
}
fn negative_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
let r = (kx * kx + ky * ky).sqrt();
[
[-ky * ky / r / 2.0, ky / 2.0, kx * ky / r / 2.0],
[ky / 2.0, -r / 2.0, -kx / 2.0],
[kx * ky / r / 2.0, -kx / 2.0, -kx * kx / r / 2.0],
]
}
{
let g = match boundaries.east {
Boundary::This => y.slice(s![.., .., 0]),
};
// East boundary
let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32);
for ((((mut k, v), g), &kx), &ky) in k
.slice_mut(s![.., .., nx - 1])
.gencolumns_mut()
.into_iter()
.zip(y.slice(s![.., .., nx - 1]).gencolumns())
.zip(g.gencolumns())
.zip(grid.detj_dxi_dx.slice(s![.., nx - 1]))
.zip(grid.detj_dxi_dy.slice(s![.., nx - 1]))
{
// East boundary, positive flux
let tau = -1.0;
let v = (v[0], v[1], v[2]);
let g = (g[0], g[1], g[2]);
let plus = positive_flux(kx, ky);
k[0] += tau
* hinv
* (plus[0][0] * (v.0 - g.0) + plus[0][1] * (v.1 - g.1) + plus[0][2] * (v.2 - g.2));
k[1] += tau
* hinv
* (plus[1][0] * (v.0 - g.0) + plus[1][1] * (v.1 - g.1) + plus[1][2] * (v.2 - g.2));
k[2] += tau
* hinv
* (plus[2][0] * (v.0 - g.0) + plus[2][1] * (v.1 - g.1) + plus[2][2] * (v.2 - g.2));
}
}
{
// West boundary, negative flux
let g = match boundaries.east {
Boundary::This => y.slice(s![.., .., nx - 1]),
};
let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32);
for ((((mut k, v), g), &kx), &ky) in k
.slice_mut(s![.., .., 0])
.gencolumns_mut()
.into_iter()
.zip(y.slice(s![.., .., 0]).gencolumns())
.zip(g.gencolumns())
.zip(grid.detj_dxi_dx.slice(s![.., 0]))
.zip(grid.detj_dxi_dy.slice(s![.., 0]))
{
let tau = 1.0;
let v = (v[0], v[1], v[2]);
let g = (g[0], g[1], g[2]);
let minus = negative_flux(kx, ky);
k[0] += tau
* hinv
* (minus[0][0] * (v.0 - g.0)
+ minus[0][1] * (v.1 - g.1)
+ minus[0][2] * (v.2 - g.2));
k[1] += tau
* hinv
* (minus[1][0] * (v.0 - g.0)
+ minus[1][1] * (v.1 - g.1)
+ minus[1][2] * (v.2 - g.2));
k[2] += tau
* hinv
* (minus[2][0] * (v.0 - g.0)
+ minus[2][1] * (v.1 - g.1)
+ minus[2][2] * (v.2 - g.2));
}
}
{
let g = match boundaries.north {
Boundary::This => y.slice(s![.., 0, ..]),
};
let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32);
for ((((mut k, v), g), &kx), &ky) in k
.slice_mut(s![.., ny - 1, ..])
.gencolumns_mut()
.into_iter()
.zip(y.slice(s![.., ny - 1, ..]).gencolumns())
.zip(g.gencolumns())
.zip(grid.detj_deta_dx.slice(s![ny - 1, ..]))
.zip(grid.detj_deta_dy.slice(s![ny - 1, ..]))
{
// North boundary, positive flux
let tau = -1.0;
let v = (v[0], v[1], v[2]);
let g = (g[0], g[1], g[2]);
let plus = positive_flux(kx, ky);
k[0] += tau
* hinv
* (plus[0][0] * (v.0 - g.0) + plus[0][1] * (v.1 - g.1) + plus[0][2] * (v.2 - g.2));
k[1] += tau
* hinv
* (plus[1][0] * (v.0 - g.0) + plus[1][1] * (v.1 - g.1) + plus[1][2] * (v.2 - g.2));
k[2] += tau
* hinv
* (plus[2][0] * (v.0 - g.0) + plus[2][1] * (v.1 - g.1) + plus[2][2] * (v.2 - g.2));
}
}
{
let g = match boundaries.south {
Boundary::This => y.slice(s![.., ny - 1, ..]),
};
let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32);
for ((((mut k, v), g), &kx), &ky) in k
.slice_mut(s![.., 0, ..])
.gencolumns_mut()
.into_iter()
.zip(y.slice(s![.., 0, ..]).gencolumns())
.zip(g.gencolumns())
.zip(grid.detj_deta_dx.slice(s![0, ..]))
.zip(grid.detj_deta_dy.slice(s![0, ..]))
{
// South boundary, negative flux
let tau = 1.0;
let v = (v[0], v[1], v[2]);
let g = (g[0], g[1], g[2]);
let minus = negative_flux(kx, ky);
k[0] += tau
* hinv
* (minus[0][0] * (v.0 - g.0)
+ minus[0][1] * (v.1 - g.1)
+ minus[0][2] * (v.2 - g.2));
k[1] += tau
* hinv
* (minus[1][0] * (v.0 - g.0)
+ minus[1][1] * (v.1 - g.1)
+ minus[1][2] * (v.2 - g.2));
k[2] += tau
* hinv
* (minus[2][0] * (v.0 - g.0)
+ minus[2][1] * (v.1 - g.1)
+ minus[2][2] * (v.2 - g.2));
}
}
}
#[derive(Clone, Debug)]
pub struct WorkBuffers {
k: [Field; 4],
tmp: (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
}
impl WorkBuffers {
pub fn new(ny: usize, nx: usize) -> Self {
let arr2 = Array2::zeros((ny, nx));
let arr3 = Field::new(ny, nx);
Self {
k: [arr3.clone(), arr3.clone(), arr3.clone(), arr3],
tmp: (arr2.clone(), arr2.clone(), arr2.clone(), arr2),
}
}
}