265 lines
7.7 KiB
Python
Executable File
265 lines
7.7 KiB
Python
Executable File
#! /bin/env python3
|
|
import matplotlib as mpl
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
|
def gridlines(obj, x, y):
|
|
for j in range(1, x.shape[0] - 1):
|
|
obj.plot(x[j, :], y[j, :], color="#7f7f7f", linewidth=0.1, alpha=0.3)
|
|
for j in range(1, x.shape[1] - 1):
|
|
obj.plot(x[:, j], y[:, j], color="#7f7f7f", linewidth=0.1, alpha=0.3)
|
|
|
|
obj.plot(x[0, :], y[0, :], color="#7f7f7f", linewidth=0.2)
|
|
obj.plot(x[-1, :], y[-1, :], color="#7f7f7f", linewidth=0.2)
|
|
obj.plot(x[:, 0], y[:, 0], color="#7f7f7f", linewidth=0.2)
|
|
obj.plot(x[:, -1], y[:, -1], color="#7f7f7f", linewidth=0.2)
|
|
|
|
|
|
def plot_all(grids, error: bool, save: bool, filename="figure.png"):
|
|
sym_cmap = plt.get_cmap("PiYG") # Symmetric around zero
|
|
if error:
|
|
e_cmap = sym_cmap
|
|
else:
|
|
e_cmap = plt.get_cmap("Greys")
|
|
|
|
f, axarr = plt.subplots(2, 2)
|
|
|
|
min_rho = min(np.min(g["rho"]) for g in grids)
|
|
max_rho = max(np.max(g["rho"]) for g in grids)
|
|
if error:
|
|
r = 1.2 * max(abs(min_rho), abs(max_rho))
|
|
rho_levels = np.linspace(-r, r, 34)
|
|
else:
|
|
r = 1.2 * max(abs(min_rho - 1), abs(max_rho - 1))
|
|
rho_levels = np.linspace(1 - r, 1 + r, 34)
|
|
|
|
min_rhou = min(np.min(g["rhou"]) for g in grids)
|
|
max_rhou = max(np.max(g["rhov"]) for g in grids)
|
|
if error:
|
|
r = 1.2 * max(abs(min_rhou), abs(max_rhou))
|
|
rhou_levels = np.linspace(-r, r, 20)
|
|
else:
|
|
r = 1.2 * max(abs(min_rhou - 1), abs(max_rhou - 1))
|
|
rhou_levels = np.linspace(1 - r, 1 + r, 20)
|
|
|
|
min_rhov = min(np.min(g["rhov"]) for g in grids)
|
|
max_rhov = max(np.max(g["rhov"]) for g in grids)
|
|
r = 1.2 * max(abs(min_rhov), abs(max_rhov))
|
|
rhov_levels = np.linspace(-r, r, 20)
|
|
|
|
min_e = min(np.min(g["e"]) for g in grids)
|
|
max_e = max(np.max(g["e"]) for g in grids)
|
|
if error:
|
|
r = max(abs(min_e), abs(max_e))
|
|
e_levels = np.linspace(-r, r, 20)
|
|
else:
|
|
e_levels = np.linspace(min_e, max_e)
|
|
|
|
for g in grids:
|
|
x = g["x"]
|
|
y = g["y"]
|
|
axarr[0, 0].contourf(x, y, g["rho"], cmap=sym_cmap, levels=rho_levels)
|
|
gridlines(axarr[0, 0], x, y)
|
|
|
|
axarr[0, 1].contourf(x, y, g["rhou"], cmap=sym_cmap, levels=rhou_levels)
|
|
gridlines(axarr[0, 1], x, y)
|
|
|
|
axarr[1, 0].contourf(x, y, g["rhov"], cmap=sym_cmap, levels=rhov_levels)
|
|
gridlines(axarr[1, 0], x, y)
|
|
|
|
axarr[1, 1].contourf(x, y, g["e"], cmap=e_cmap, levels=e_levels)
|
|
gridlines(axarr[1, 1], x, y)
|
|
|
|
axarr[0, 0].set_title(r"$\rho$")
|
|
axarr[0, 0].set_xlabel("x")
|
|
axarr[0, 0].set_ylabel("y")
|
|
norm = mpl.colors.Normalize(vmin=rho_levels[0], vmax=rho_levels[-1])
|
|
sm = plt.cm.ScalarMappable(cmap=sym_cmap, norm=norm)
|
|
sm.set_array([])
|
|
plt.colorbar(sm, ax=axarr[0, 0])
|
|
|
|
axarr[0, 1].set_title(r"$\rho u$")
|
|
axarr[0, 1].set_xlabel("x")
|
|
axarr[0, 1].set_ylabel("y")
|
|
norm = mpl.colors.Normalize(vmin=rhou_levels[0], vmax=rhou_levels[-1])
|
|
sm = plt.cm.ScalarMappable(cmap=sym_cmap, norm=norm)
|
|
sm.set_array([])
|
|
plt.colorbar(sm, ax=axarr[0, 1])
|
|
|
|
axarr[1, 0].set_title(r"$\rho v$")
|
|
axarr[1, 0].set_xlabel("x")
|
|
axarr[1, 0].set_ylabel("y")
|
|
norm = mpl.colors.Normalize(vmin=rhov_levels[0], vmax=rhov_levels[-1])
|
|
sm = plt.cm.ScalarMappable(cmap=sym_cmap, norm=norm)
|
|
sm.set_array([])
|
|
plt.colorbar(sm, ax=axarr[1, 0])
|
|
|
|
axarr[1, 1].set_title(r"$e$")
|
|
axarr[1, 1].set_xlabel("x")
|
|
axarr[1, 1].set_ylabel("y")
|
|
norm = mpl.colors.Normalize(vmin=e_levels[0], vmax=e_levels[-1])
|
|
sm = plt.cm.ScalarMappable(cmap=e_cmap, norm=norm)
|
|
sm.set_array([])
|
|
plt.colorbar(sm, ax=axarr[1, 1])
|
|
|
|
if save:
|
|
plt.savefig(filename, bbox_inches="tight", dpi=600)
|
|
|
|
plt.show()
|
|
|
|
|
|
def plot_total_error(grids, save: bool, filename="figure.png"):
|
|
cmap = plt.get_cmap("Greys")
|
|
|
|
total_err = [
|
|
np.abs(g["rho"]) + np.abs(g["rhou"]) + np.abs(g["rhov"]) + np.abs(g["e"])
|
|
for g in grids
|
|
]
|
|
|
|
r = max(np.max(err) for err in total_err)
|
|
|
|
levels = np.linspace(0, r, 30)
|
|
|
|
for g, err in zip(grids, total_err):
|
|
x = g["x"]
|
|
y = g["y"]
|
|
|
|
plt.contourf(x, y, err, cmap=cmap, levels=levels)
|
|
gridlines(plt, x, y)
|
|
|
|
plt.title("Total error")
|
|
norm = mpl.colors.Normalize(vmin=levels[0], vmax=levels[-1])
|
|
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
|
sm.set_array([])
|
|
plt.colorbar(sm)
|
|
|
|
plt.xlabel("x")
|
|
plt.ylabel("y")
|
|
|
|
if save:
|
|
plt.savefig(args.output, bbox_inches="tight", dpi=600)
|
|
|
|
plt.show()
|
|
|
|
|
|
def plot_pressure(grids, save: bool, filename="figure.png"):
|
|
cmap = plt.get_cmap("RdGy")
|
|
gamma = 1.4 # Assumption might be wrong
|
|
Mach = 0.5
|
|
|
|
p = [
|
|
(gamma - 1) * (g["e"] - (g["rhou"] ** 2 + g["rhov"] ** 2) / (2 * g["rho"]))
|
|
for g in grids
|
|
]
|
|
|
|
flat_p = np.array([])
|
|
for p_ in p:
|
|
flat_p = np.append(flat_p, p_)
|
|
|
|
max_p = np.max(flat_p)
|
|
min_p = np.min(flat_p)
|
|
|
|
p_inf = 1 / (gamma * Mach ** 2)
|
|
|
|
r = max(max_p - p_inf, p_inf - min_p)
|
|
|
|
levels = np.linspace(p_inf - r, p_inf + r, 30)
|
|
|
|
for g, p_ in zip(grids, p):
|
|
x = g["x"]
|
|
y = g["y"]
|
|
|
|
plt.contourf(x, y, p_, cmap=cmap, levels=levels)
|
|
gridlines(plt, x, y)
|
|
|
|
plt.title("Pressure")
|
|
norm = mpl.colors.Normalize(vmin=levels[0], vmax=levels[-1])
|
|
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
|
sm.set_array([])
|
|
plt.colorbar(sm)
|
|
|
|
plt.xlabel("x")
|
|
plt.ylabel("y")
|
|
|
|
if save:
|
|
plt.savefig(filename, bbox_inches="tight", dpi=600)
|
|
|
|
plt.show()
|
|
|
|
|
|
def read_from_file(filename):
|
|
grids = []
|
|
|
|
with open(filename, "rb") as f:
|
|
ngrids = int(np.fromfile(f, dtype=np.uint32, count=1))
|
|
for i in range(ngrids):
|
|
(neta, nxi) = np.fromfile(f, dtype=np.uint32, count=2)
|
|
|
|
x = np.fromfile(f, dtype=np.double, count=neta * nxi)
|
|
x = x.reshape((neta, nxi))
|
|
|
|
y = np.fromfile(f, dtype=np.double, count=neta * nxi)
|
|
y = y.reshape((neta, nxi))
|
|
|
|
rho = np.fromfile(f, dtype=np.double, count=neta * nxi)
|
|
rho = rho.reshape((neta, nxi))
|
|
|
|
rhou = np.fromfile(f, dtype=np.double, count=neta * nxi)
|
|
rhou = rhou.reshape((neta, nxi))
|
|
|
|
rhov = np.fromfile(f, dtype=np.double, count=neta * nxi)
|
|
rhov = rhov.reshape((neta, nxi))
|
|
|
|
e = np.fromfile(f, dtype=np.double, count=neta * nxi)
|
|
e = e.reshape((neta, nxi))
|
|
|
|
grids.append(
|
|
{"x": x, "y": y, "rho": rho, "rhou": rhou, "rhov": rhov, "e": e}
|
|
)
|
|
|
|
return grids
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser(description="Plot a solution from the eulersolver")
|
|
parser.add_argument("filename", metavar="filename", type=str)
|
|
parser.add_argument(
|
|
"-e",
|
|
help="Scale is centered around zero (implies -a)",
|
|
action="store_true",
|
|
dest="error",
|
|
)
|
|
parser.add_argument(
|
|
"-te", help="Plots total error", action="store_true", dest="total_error"
|
|
)
|
|
parser.add_argument("-s", help="Save figure", action="store_true", dest="save")
|
|
parser.add_argument(
|
|
"-o",
|
|
help="Output of saved figure",
|
|
type=str,
|
|
default="figure.png",
|
|
dest="output",
|
|
)
|
|
parser.add_argument(
|
|
"-a", help="Show all four variables", action="store_true", dest="all"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
filename = args.filename
|
|
if not os.path.isfile(filename):
|
|
filename = "solution{:03}.bin".format(int(filename))
|
|
|
|
grids = read_from_file(filename)
|
|
|
|
if args.all or args.error:
|
|
plot_all(grids, args.error, args.save, args.output)
|
|
elif args.total_error:
|
|
plot_total_error(grids, args.save, args.output)
|
|
else:
|
|
plot_pressure(grids, args.save, args.output)
|