import numpy as np rstar = 0.5 # Fixed radius eps = 1.0 M = 0.1 # Indirectly sets p_inf gamma = 1.4 # Solid p_inf = 1.0 / (gamma * M * M) print(f"p_inf: {p_inf}") dx = 10000.0 dy = 100.0 f = (1 - (dx*dx + dy*dy))/(rstar*rstar) print(f"f: {f}") # print(eps*dy/(2*np.pi*np.sqrt(p_inf)*rstar * rstar) * np.exp(f / 2)) u = 1.0 - eps*dy/(2*np.pi*np.sqrt(p_inf)*rstar * rstar) * np.exp(f / 2) v = 0.0 + eps*dx/(2*np.pi*np.sqrt(p_inf)*rstar * rstar) * np.exp(f / 2) print(f"sub p: {eps*eps*(gamma - 1)*M*M / (8*np.pi*np.pi*p_inf*rstar*rstar)*np.exp(f)}") rho = np.power(1.0 - eps*eps*(gamma - 1)*M*M / ( 8*np.pi*np.pi*p_inf*rstar*rstar)*np.exp(f), 1.0/(gamma - 1)) p = (rho**gamma)*p_inf print(f"p: {p}") e = p / (gamma - 1) + rho*(u**2 + v**2) / 2 print(f"rho: {v}") print(f"u: {u}") print(f"v: {v}") print(f"e: {e}")