use super::operators::{SbpOperator, UpwindOperator}; use super::Grid; use ndarray::prelude::*; use ndarray::{azip, Zip}; pub const GAMMA: f32 = 1.4; #[derive(Clone, Debug)] /// A 4 x ny x nx array pub struct Field(pub(crate) Array3); impl std::ops::Deref for Field { type Target = Array3; fn deref(&self) -> &Self::Target { &self.0 } } impl std::ops::DerefMut for Field { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } impl Field { pub fn new(ny: usize, nx: usize) -> Self { let field = Array3::zeros((4, ny, nx)); Self(field) } pub fn nx(&self) -> usize { self.0.shape()[2] } pub fn ny(&self) -> usize { self.0.shape()[1] } pub fn rho(&self) -> ArrayView2 { self.slice(s![0, .., ..]) } pub fn rhou(&self) -> ArrayView2 { self.slice(s![1, .., ..]) } pub fn rhov(&self) -> ArrayView2 { self.slice(s![2, .., ..]) } pub fn e(&self) -> ArrayView2 { self.slice(s![3, .., ..]) } pub fn rho_mut(&mut self) -> ArrayViewMut2 { self.slice_mut(s![0, .., ..]) } pub fn rhou_mut(&mut self) -> ArrayViewMut2 { self.slice_mut(s![1, .., ..]) } pub fn rhov_mut(&mut self) -> ArrayViewMut2 { self.slice_mut(s![2, .., ..]) } pub fn e_mut(&mut self) -> ArrayViewMut2 { self.slice_mut(s![3, .., ..]) } #[allow(unused)] pub fn components( &self, ) -> ( ArrayView2, ArrayView2, ArrayView2, ArrayView2, ) { (self.rho(), self.rhou(), self.rhov(), self.e()) } #[allow(unused)] pub fn components_mut( &mut self, ) -> ( ArrayViewMut2, ArrayViewMut2, ArrayViewMut2, ArrayViewMut2, ) { let mut iter = self.0.outer_iter_mut(); let rho = iter.next().unwrap(); let rhou = iter.next().unwrap(); let rhov = iter.next().unwrap(); let e = iter.next().unwrap(); assert_eq!(iter.next(), None); (rho, rhou, rhov, e) } fn north(&self) -> ArrayView2 { self.slice(s![.., self.ny() - 1, ..]) } fn south(&self) -> ArrayView2 { self.slice(s![.., 0, ..]) } fn east(&self) -> ArrayView2 { self.slice(s![.., .., self.nx() - 1]) } fn west(&self) -> ArrayView2 { self.slice(s![.., .., 0]) } fn north_mut(&mut self) -> ArrayViewMut2 { let ny = self.ny(); self.slice_mut(s![.., ny - 1, ..]) } fn south_mut(&mut self) -> ArrayViewMut2 { self.slice_mut(s![.., 0, ..]) } fn east_mut(&mut self) -> ArrayViewMut2 { let nx = self.nx(); self.slice_mut(s![.., .., nx - 1]) } fn west_mut(&mut self) -> ArrayViewMut2 { self.slice_mut(s![.., .., 0]) } } pub(crate) fn advance( rhs: RHS, prev: &Field, fut: &mut Field, dt: f32, grid: &Grid, work_buffers: Option<&mut WorkBuffers>, ) where SBP: SbpOperator, RHS: Fn( &mut Field, &Field, &Grid, &BoundaryTerms, &mut (Field, Field, Field, Field, Field, Field), ), { assert_eq!(prev.0.shape(), fut.0.shape()); let mut wb: WorkBuffers; let (y, k, tmp) = if let Some(x) = work_buffers { (&mut x.y, &mut x.buf, &mut x.tmp) } else { wb = WorkBuffers::new(prev.nx(), prev.ny()); (&mut wb.y, &mut wb.buf, &mut wb.tmp) }; let boundaries = BoundaryTerms { north: Boundary::This, south: Boundary::This, west: Boundary::This, east: Boundary::This, }; for i in 0..4 { // y = y0 + c*kn y.assign(&prev); match i { 0 => {} 1 | 2 => { y.scaled_add(1.0 / 2.0 * dt, &k[i - 1]); } 3 => { y.scaled_add(dt, &k[i - 1]); } _ => { unreachable!(); } }; rhs(&mut k[i], &y, grid, &boundaries, tmp); } Zip::from(&mut fut.0) .and(&prev.0) .and(&*k[0]) .and(&*k[1]) .and(&*k[2]) .and(&*k[3]) .apply(|y1, &y0, &k1, &k2, &k3, &k4| *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)); } fn pressure(gamma: f32, rho: f32, rhou: f32, rhov: f32, e: f32) -> f32 { (gamma - 1.0) * (e - (rhou * rhou + rhov * rhov) / (2.0 * rho)) } #[allow(non_snake_case)] pub(crate) fn RHS_trad( k: &mut Field, y: &Field, grid: &Grid, boundaries: &BoundaryTerms, tmp: &mut (Field, Field, Field, Field, Field, Field), ) { let ehat = &mut tmp.0; let fhat = &mut tmp.1; fluxes((ehat, fhat), y, grid); let dE = &mut tmp.2; let dF = &mut tmp.3; SBP::diffxi(ehat.rho(), dE.rho_mut()); SBP::diffxi(ehat.rhou(), dE.rhou_mut()); SBP::diffxi(ehat.rhov(), dE.rhov_mut()); SBP::diffxi(ehat.e(), dE.e_mut()); SBP::diffeta(fhat.rho(), dF.rho_mut()); SBP::diffeta(fhat.rhou(), dF.rhou_mut()); SBP::diffeta(fhat.rhov(), dF.rhov_mut()); SBP::diffeta(fhat.e(), dF.e_mut()); azip!((out in &mut k.0, eflux in &dE.0, fflux in &dF.0, detj in &grid.detj.broadcast((4, y.ny(), y.nx())).unwrap()) { *out = (-eflux - fflux)/detj }); SAT_characteristics(k, y, grid, boundaries); } #[allow(non_snake_case)] pub(crate) fn RHS_upwind( k: &mut Field, y: &Field, grid: &Grid, boundaries: &BoundaryTerms, tmp: &mut (Field, Field, Field, Field, Field, Field), ) { let ehat = &mut tmp.0; let fhat = &mut tmp.1; fluxes((ehat, fhat), y, grid); let dE = &mut tmp.2; let dF = &mut tmp.3; UO::diffxi(ehat.rho(), dE.rho_mut()); UO::diffxi(ehat.rhou(), dE.rhou_mut()); UO::diffxi(ehat.rhov(), dE.rhov_mut()); UO::diffxi(ehat.e(), dE.e_mut()); UO::diffeta(fhat.rho(), dF.rho_mut()); UO::diffeta(fhat.rhou(), dF.rhou_mut()); UO::diffeta(fhat.rhov(), dF.rhov_mut()); UO::diffeta(fhat.e(), dF.e_mut()); let ad_xi = &mut tmp.4; let ad_eta = &mut tmp.5; upwind_dissipation((ad_xi, ad_eta), y, grid, (&mut tmp.0, &mut tmp.1)); azip!((out in &mut k.0, eflux in &dE.0, fflux in &dF.0, ad_xi in &ad_xi.0, ad_eta in &ad_eta.0, detj in &grid.detj.broadcast((4, y.ny(), y.nx())).unwrap()) { *out = (-eflux - fflux + ad_xi + ad_eta)/detj }); SAT_characteristics(k, y, grid, boundaries); } fn upwind_dissipation( k: (&mut Field, &mut Field), y: &Field, grid: &Grid, tmp: (&mut Field, &mut Field), ) { let n = y.nx() * y.ny(); let yview = y.view().into_shape((4, n)).unwrap(); let mut tmp0 = tmp.0.view_mut().into_shape((4, n)).unwrap(); let mut tmp1 = tmp.1.view_mut().into_shape((4, n)).unwrap(); for ( ((((((y, mut tmp0), mut tmp1), detj), detj_dxi_dx), detj_dxi_dy), detj_deta_dx), detj_deta_dy, ) in yview .axis_iter(ndarray::Axis(1)) .zip(tmp0.axis_iter_mut(ndarray::Axis(1))) .zip(tmp1.axis_iter_mut(ndarray::Axis(1))) .zip(grid.detj.iter()) .zip(grid.detj_dxi_dx.iter()) .zip(grid.detj_dxi_dy.iter()) .zip(grid.detj_deta_dx.iter()) .zip(grid.detj_deta_dy.iter()) { let rho = y[0]; assert!(rho > 0.0); let rhou = y[1]; let rhov = y[2]; let e = y[3]; let u = rhou / rho; let v = rhov / rho; let uhat = detj_dxi_dx / detj * u + detj_dxi_dy / detj * v; let vhat = detj_deta_dx / detj * u + detj_deta_dy / detj * v; let p = pressure(GAMMA, rho, rhou, rhov, e); assert!(p > 0.0); let c = (GAMMA * p / rho).sqrt(); let alpha_u = uhat.abs() + c; let alpha_v = vhat.abs() + c; tmp0[0] = alpha_u * rho * detj; tmp1[0] = alpha_v * rho * detj; tmp0[1] = alpha_u * rhou * detj; tmp1[1] = alpha_v * rhou * detj; tmp0[2] = alpha_u * rhov * detj; tmp1[2] = alpha_v * rhov * detj; tmp0[3] = alpha_u * e * detj; tmp1[3] = alpha_v * e * detj; } UO::dissxi(tmp.0.rho(), k.0.rho_mut()); UO::dissxi(tmp.0.rhou(), k.0.rhou_mut()); UO::dissxi(tmp.0.rhov(), k.0.rhov_mut()); UO::dissxi(tmp.0.e(), k.0.e_mut()); UO::disseta(tmp.1.rho(), k.1.rho_mut()); UO::disseta(tmp.1.rhou(), k.1.rhou_mut()); UO::disseta(tmp.1.rhov(), k.1.rhov_mut()); UO::disseta(tmp.1.e(), k.1.e_mut()); } fn fluxes(k: (&mut Field, &mut Field), y: &Field, grid: &Grid) { let j_dxi_dx = grid.detj_dxi_dx.view(); let j_dxi_dy = grid.detj_dxi_dy.view(); let j_deta_dx = grid.detj_deta_dx.view(); let j_deta_dy = grid.detj_deta_dy.view(); let rho = y.rho(); let rhou = y.rhou(); let rhov = y.rhov(); let e = y.e(); for j in 0..y.ny() { for i in 0..y.nx() { let rho = rho[(j, i)]; assert!(rho > 0.0); let rhou = rhou[(j, i)]; let rhov = rhov[(j, i)]; let e = e[(j, i)]; let p = pressure(GAMMA, rho, rhou, rhov, e); assert!(p > 0.0); let ef = [ rhou, rhou * rhou / rho + p, rhou * rhov / rho, rhou * (e + p) / rho, ]; let ff = [ rhov, rhou * rhov / rho, rhov * rhov / rho + p, rhov * (e + p) / rho, ]; for comp in 0..4 { let eflux = j_dxi_dx[(j, i)] * ef[comp] + j_dxi_dy[(j, i)] * ff[comp]; let fflux = j_deta_dx[(j, i)] * ef[comp] + j_deta_dy[(j, i)] * ff[comp]; k.0[(comp, j, i)] = eflux; k.1[(comp, j, i)] = fflux; } } } } #[derive(Clone, Debug)] pub enum Boundary { This, } #[derive(Clone, Debug)] pub struct BoundaryTerms { pub north: Boundary, pub south: Boundary, pub east: Boundary, pub west: Boundary, } #[allow(non_snake_case)] /// Boundary conditions (SAT) fn SAT_characteristics( k: &mut Field, y: &Field, grid: &Grid, _boundaries: &BoundaryTerms, ) { /* // Whean using infinite boundaries, use this... let steady_v = [1.0, 1.0, 0.0, { let M = 0.1; let p_inf = 1.0 / (GAMMA * M * M); p_inf / (GAMMA - 1.0) + 0.5 }]; let steady_a = ndarray::Array1::from(steady_v.to_vec()); let steady = steady_a.broadcast((k.nx(), 4)).unwrap().reversed_axes(); assert_eq!(steady.shape(), [4, k.nx()]); */ // North boundary { let hi = (k.ny() - 1) as f32 * SBP::h()[0]; let sign = -1.0; let tau = 1.0; let slice = s![y.ny() - 1, ..]; SAT_characteristic( k.north_mut(), y.north(), y.south(), // Self South //steady.view(), hi, sign, tau, grid.detj.slice(slice), grid.detj_deta_dx.slice(slice), grid.detj_deta_dy.slice(slice), ); } // South boundary { let hi = (k.ny() - 1) as f32 * SBP::h()[0]; let sign = 1.0; let tau = -1.0; let slice = s![0, ..]; SAT_characteristic( k.south_mut(), y.south(), y.north(), // Self North //steady.view(), hi, sign, tau, grid.detj.slice(slice), grid.detj_deta_dx.slice(slice), grid.detj_deta_dy.slice(slice), ); } /*let steady = ndarray::Array2::from_shape_fn((4, k.ny()), |(k, _)| match k { 0 => 1.0, 1 => 1.0, 2 => 0.0, 3 => { let M = 0.1; let p_inf = 1.0 / (GAMMA * M * M); p_inf / (GAMMA - 1.0) + 0.5 } _ => unreachable!(), });*/ // West Boundary { let hi = (k.nx() - 1) as f32 * SBP::h()[0]; let sign = 1.0; let tau = -1.0; let slice = s![.., 0]; SAT_characteristic( k.west_mut(), y.west(), y.east(), // Self East //steady.view(), hi, sign, tau, grid.detj.slice(slice), grid.detj_dxi_dx.slice(slice), grid.detj_dxi_dy.slice(slice), ); } // East Boundary { let hi = (k.nx() - 1) as f32 * SBP::h()[0]; let sign = -1.0; let tau = 1.0; let slice = s![.., y.nx() - 1]; SAT_characteristic( k.east_mut(), y.east(), y.west(), // Self West //steady.view(), hi, sign, tau, grid.detj.slice(slice), grid.detj_dxi_dx.slice(slice), grid.detj_dxi_dy.slice(slice), ); } } #[allow(non_snake_case)] /// Boundary conditions (SAT) fn SAT_characteristic( mut k: ArrayViewMut2, y: ArrayView2, z: ArrayView2, // Size 4 x n (all components in line) hi: f32, sign: f32, tau: f32, detj: ArrayView1, detj_d_dx: ArrayView1, detj_d_dy: ArrayView1, ) { assert_eq!(detj.shape(), detj_d_dx.shape()); assert_eq!(detj.shape(), detj_d_dy.shape()); assert_eq!(y.shape(), z.shape()); assert_eq!(y.shape()[0], 4); assert_eq!(y.shape()[1], detj.shape()[0]); for (((((mut k, y), z), detj), detj_d_dx), detj_d_dy) in k .axis_iter_mut(ndarray::Axis(1)) .zip(y.axis_iter(ndarray::Axis(1))) .zip(z.axis_iter(ndarray::Axis(1))) .zip(detj.iter()) .zip(detj_d_dx.iter()) .zip(detj_d_dy.iter()) { let rho = y[0]; let rhou = y[1]; let rhov = y[2]; let e = y[3]; let kx_ = detj_d_dx / detj; let ky_ = detj_d_dy / detj; let (kx, ky) = { let r = f32::hypot(kx_, ky_); (kx_ / r, ky_ / r) }; let u = rhou / rho; let v = rhov / rho; let theta = kx * u + ky * v; let p = pressure(GAMMA, rho, rhou, rhov, e); let c = (GAMMA * p / rho).sqrt(); let phi2 = (GAMMA - 1.0) * (u * u + v * v) / 2.0; let phi2_c2 = (phi2 + c * c) / (GAMMA - 1.0); let T = [ [1.0, 0.0, 1.0, 1.0], [u, ky, u + kx * c, u - kx * c], [v, -kx, v + ky * c, v - ky * c], [ phi2 / (GAMMA - 1.0), ky * u - kx * v, phi2_c2 + c * theta, phi2_c2 - c * theta, ], ]; let U = kx_ * u + ky_ * v; let L = [ U, U, U + c * f32::hypot(kx_, ky_), U - c * f32::hypot(kx_, ky_), ]; let beta = 1.0 / (2.0 * c * c); let TI = [ [ 1.0 - phi2 / (c * c), (GAMMA - 1.0) * u / (c * c), (GAMMA - 1.0) * v / (c * c), -(GAMMA - 1.0) / (c * c), ], [-(ky * u - kx * v), ky, -kx, 0.0], [ beta * (phi2 - c * theta), beta * (kx * c - (GAMMA - 1.0) * u), beta * (ky * c - (GAMMA - 1.0) * v), beta * (GAMMA - 1.0), ], [ beta * (phi2 + c * theta), -beta * (kx * c + (GAMMA - 1.0) * u), -beta * (ky * c + (GAMMA - 1.0) * v), beta * (GAMMA - 1.0), ], ]; let res = [rho - z[0], rhou - z[1], rhov - z[2], e - z[3]]; let mut TIres = [0.0; 4]; for row in 0..4 { for col in 0..4 { TIres[row] += TI[row][col] * res[col]; } } // L + sign(abs(L)) * TIres let mut LTIres = [0.0; 4]; for row in 0..4 { LTIres[row] = (L[row] + sign * L[row].abs()) * TIres[row]; } // T*LTIres let mut TLTIres = [0.0; 4]; for row in 0..4 { for col in 0..4 { TLTIres[row] += T[row][col] * LTIres[col]; } } for comp in 0..4 { k[comp] += hi * tau * TLTIres[comp]; } } } pub struct WorkBuffers { y: Field, buf: [Field; 4], tmp: (Field, Field, Field, Field, Field, Field), } impl WorkBuffers { pub fn new(nx: usize, ny: usize) -> Self { let arr3 = Field::new(nx, ny); Self { y: arr3.clone(), buf: [arr3.clone(), arr3.clone(), arr3.clone(), arr3.clone()], tmp: ( arr3.clone(), arr3.clone(), arr3.clone(), arr3.clone(), arr3.clone(), arr3, ), } } }