use super::operators::SbpOperator; use ndarray::{Array2, Zip}; pub struct System { pub(crate) ex: Array2, pub(crate) ey: Array2, pub(crate) hz: Array2, } fn gaussian(x: f32, x0: f32, y: f32, y0: f32) -> f32 { use std::f32; let x = x - x0; let y = y - y0; let sigma = 0.05; 1.0 / (2.0 * f32::consts::PI * sigma * sigma) * (-(x * x + y * y) / (2.0 * sigma * sigma)).exp() } impl System { pub fn new(width: u32, height: u32) -> Self { let field = Array2::zeros((height as usize, width as usize)); let ex = field.clone(); let ey = field.clone(); let hz = field; Self { ex, ey, hz } } pub fn set_gaussian(&mut self, x0: f32, y0: f32) { let nx = self.ex.shape()[1]; let ny = self.ex.shape()[0]; for j in 0..ny { for i in 0..nx { // Must divice interval on nx/ny instead of nx - 1/ny-1 // due to periodic conditions [0, 1) let x = i as f32 / nx as f32; let y = j as f32 / ny as f32; self.ex[(j, i)] = 0.0; self.ey[(j, i)] = 0.0; self.hz[(j, i)] = gaussian(x, x0, y, y0) / 32.0; } } } pub fn advance(&self, fut: &mut System, dt: f32, work_buffers: Option<&mut WorkBuffers>) where SBP: SbpOperator, { assert_eq!(self.ex.shape(), fut.ex.shape()); let mut wb: WorkBuffers; let (y, k) = match work_buffers { Some(x) => (&mut x.y, &mut x.buf), None => { wb = WorkBuffers::new(self.ex.shape()[1], self.ex.shape()[0]); (&mut wb.y, &mut wb.buf) } }; for i in 0..4 { // y = y0 + c*kn y.0.assign(&self.ex); y.1.assign(&self.hz); y.2.assign(&self.ey); match i { 0 => {} 1 => { y.0.scaled_add(1.0 / 2.0 * dt, &k[i - 1].0); y.1.scaled_add(1.0 / 2.0 * dt, &k[i - 1].1); y.2.scaled_add(1.0 / 2.0 * dt, &k[i - 1].2); } 2 => { y.0.scaled_add(1.0 / 2.0 * dt, &k[i - 1].0); y.1.scaled_add(1.0 / 2.0 * dt, &k[i - 1].1); y.2.scaled_add(1.0 / 2.0 * dt, &k[i - 1].2); } 3 => { y.0.scaled_add(dt, &k[i - 1].0); y.1.scaled_add(dt, &k[i - 1].1); y.2.scaled_add(dt, &k[i - 1].2); } _ => { unreachable!(); } }; // ex = hz_y k[i].0.fill(0.0); SBP::diffy(y.1.view(), k[i].0.view_mut()); // ey = -hz_x k[i].2.fill(0.0); SBP::diffx(y.1.view(), k[i].2.view_mut()); k[i].2.mapv_inplace(|v| -v); // hz = -ey_x + ex_y k[i].1.fill(0.0); SBP::diffx(y.2.view(), k[i].1.view_mut()); k[i].1.mapv_inplace(|v| -v); SBP::diffy(y.0.view(), k[i].1.view_mut()); // Boundary conditions (SAT) let ny = y.0.shape()[0]; let nx = y.0.shape()[1]; let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32); // East boundary for j in 0..ny { let tau = -1.0; let g = (y.0[(j, 0)], y.1[(j, 0)], y.2[(j, 0)]); let v = (y.0[(j, nx - 1)], y.1[(j, nx - 1)], y.2[(j, nx - 1)]); // A+ = (0, 0, 0; 0, 1/2, -1/2; 0, -1/2, 1/2); k[i].0[(j, nx - 1)] += 0.0; k[i].1[(j, nx - 1)] += tau * hinv * (0.5 * (v.1 - g.1) - 0.5 * (v.2 - g.2)); k[i].2[(j, nx - 1)] += tau * hinv * (-0.5 * (v.1 - g.1) + 0.5 * (v.2 - g.2)); } // West boundary for j in 0..ny { let tau = 1.0; let g = (y.0[(j, nx - 1)], y.1[(j, nx - 1)], y.2[(j, nx - 1)]); let v = (y.0[(j, 0)], y.1[(j, 0)], y.2[(j, 0)]); // A- = (0, 0, 0; 0, -1/2, -1/2; 0, -1/2, -1/2); k[i].0[(j, 0)] += 0.0; k[i].1[(j, 0)] += tau * hinv * (-0.5 * (v.1 - g.1) - 0.5 * (v.2 - g.2)); k[i].2[(j, 0)] += tau * hinv * (-0.5 * (v.1 - g.1) - 0.5 * (v.2 - g.2)); } let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32); // North boundary for j in 0..nx { let tau = -1.0; let g = (y.0[(0, j)], y.1[(0, j)], y.2[(0, j)]); let v = (y.0[(ny - 1, j)], y.1[(ny - 1, j)], y.2[(ny - 1, j)]); // B+ = (1/2, 1/2, 0; 1/2, 1/2, 0; 0, 0, 0) k[i].0[(ny - 1, j)] += tau * hinv * (0.5 * (v.0 - g.0) + 0.5 * (v.1 - g.1)); k[i].1[(ny - 1, j)] += tau * hinv * (0.5 * (v.0 - g.0) + 0.5 * (v.1 - g.1)); k[i].2[(ny - 1, j)] += 0.0; } // South boundary for j in 0..nx { let tau = 1.0; let g = (y.0[(ny - 1, j)], y.1[(ny - 1, j)], y.2[(ny - 1, j)]); let v = (y.0[(0, j)], y.1[(0, j)], y.2[(0, j)]); // B- = (-1/2, 1/2, 0; 1/2, -1/2, 0; 0, 0, 0); k[i].0[(0, j)] += tau * hinv * (-0.5 * (v.0 - g.0) + 0.5 * (v.1 - g.1)); k[i].1[(0, j)] += tau * hinv * (0.5 * (v.0 - g.0) - 0.5 * (v.1 - g.1)); k[i].2[(0, j)] += 0.0; } } Zip::from(&mut fut.ex) .and(&self.ex) .and(&k[0].0) .and(&k[1].0) .and(&k[2].0) .and(&k[3].0) .apply(|y1, &y0, &k1, &k2, &k3, &k4| { *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4) }); Zip::from(&mut fut.hz) .and(&self.hz) .and(&k[0].1) .and(&k[1].1) .and(&k[2].1) .and(&k[3].1) .apply(|y1, &y0, &k1, &k2, &k3, &k4| { *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4) }); Zip::from(&mut fut.ey) .and(&self.ey) .and(&k[0].2) .and(&k[1].2) .and(&k[2].2) .and(&k[3].2) .apply(|y1, &y0, &k1, &k2, &k3, &k4| { *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4) }); } } pub struct WorkBuffers { y: (Array2, Array2, Array2), buf: [(Array2, Array2, Array2); 4], } impl WorkBuffers { pub fn new(nx: usize, ny: usize) -> Self { let arr = Array2::zeros((ny, nx)); Self { y: (arr.clone(), arr.clone(), arr.clone()), buf: [ (arr.clone(), arr.clone(), arr.clone()), (arr.clone(), arr.clone(), arr.clone()), (arr.clone(), arr.clone(), arr.clone()), (arr.clone(), arr.clone(), arr), ], } } }