use sbp::utils::json_to_grids; use sbp::*; use structopt::StructOpt; struct System { fnow: Vec, fnext: Vec, wb: Vec<( euler::Field, euler::Field, euler::Field, euler::Field, euler::Field, euler::Field, )>, k: [Vec; 4], grids: Vec>, bt: Vec, } impl System { fn new(grids: Vec>, bt: Vec) -> Self { let fnow = grids .iter() .map(|g| euler::Field::new(g.ny(), g.nx())) .collect::>(); let fnext = fnow.clone(); let wb = grids .iter() .map(|g| { let f = euler::Field::new(g.ny(), g.nx()); (f.clone(), f.clone(), f.clone(), f.clone(), f.clone(), f) }) .collect(); let k = [fnow.clone(), fnow.clone(), fnow.clone(), fnow.clone()]; Self { fnow, fnext, k, wb, grids, bt, } } fn vortex(&mut self, t: Float, vortex_params: euler::VortexParameters) { for (f, g) in self.fnow.iter_mut().zip(&self.grids) { f.vortex(g.x(), g.y(), t, vortex_params); } } fn advance(&mut self, dt: Float) { for i in 0.. { let fnext; match i { 0 => { for (prev, fut) in self.fnow.iter().zip(self.fnext.iter_mut()) { fut.assign(prev); } fnext = &mut self.k[i]; } 1 | 2 => { for ((prev, fut), k) in self .fnow .iter() .zip(self.fnext.iter_mut()) .zip(&self.k[i - 1]) { fut.assign(prev); fut.scaled_add(1.0 / 2.0 * dt, k); } fnext = &mut self.k[i]; } 3 => { for ((prev, fut), k) in self .fnow .iter() .zip(self.fnext.iter_mut()) .zip(&self.k[i - 1]) { fut.assign(prev); fut.scaled_add(dt, k); } fnext = &mut self.k[i]; } 4 => { for (((((prev, fut), k0), k1), k2), k3) in self .fnow .iter() .zip(self.fnext.iter_mut()) .zip(&self.k[0]) .zip(&self.k[1]) .zip(&self.k[2]) .zip(&self.k[3]) { ndarray::Zip::from(&mut **fut) .and(&**prev) .and(&**k0) .and(&**k1) .and(&**k2) .and(&**k3) .apply(|y1, &y0, &k1, &k2, &k3, &k4| { *y1 = y0 + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4) }); } std::mem::swap(&mut self.fnext, &mut self.fnow); return; } _ => { unreachable!(); } } let fields = &self.fnext; let bt = self .bt .iter() .enumerate() .map(|(i, bt)| euler::BoundaryTerms { north: match bt.north { euler::BoundaryCharacteristic::This => fields[i].south(), euler::BoundaryCharacteristic::Grid(g) => fields[g].south(), euler::BoundaryCharacteristic::Vortex(_) => todo!(), }, south: match bt.south { euler::BoundaryCharacteristic::This => fields[i].north(), euler::BoundaryCharacteristic::Grid(g) => fields[g].north(), euler::BoundaryCharacteristic::Vortex(_) => todo!(), }, west: match bt.west { euler::BoundaryCharacteristic::This => fields[i].east(), euler::BoundaryCharacteristic::Grid(g) => fields[g].east(), euler::BoundaryCharacteristic::Vortex(_) => todo!(), }, east: match bt.east { euler::BoundaryCharacteristic::This => fields[i].west(), euler::BoundaryCharacteristic::Grid(g) => fields[g].west(), euler::BoundaryCharacteristic::Vortex(_) => todo!(), }, }) .collect::>(); for ((((prev, fut), grid), wb), bt) in fields .iter() .zip(fnext) .zip(&self.grids) .zip(&mut self.wb) .zip(bt) { euler::RHS_upwind(fut, prev, grid, &bt, wb) } } } } #[derive(Debug, StructOpt)] struct Options { json: std::path::PathBuf, #[structopt(long, help = "Disable the progressbar")] no_progressbar: bool, } fn main() { let opt = Options::from_args(); let filecontents = std::fs::read_to_string(&opt.json).unwrap(); let json = json::parse(&filecontents).unwrap(); let jgrids = json_to_grids(json["grids"].clone()).unwrap(); let mut bt = Vec::with_capacity(jgrids.len()); let determine_bc = |dir| match dir { Some(dir) => euler::BoundaryCharacteristic::Grid( jgrids .iter() .position(|other| other.name.as_ref().map_or(false, |name| name == dir)) .unwrap(), ), None => euler::BoundaryCharacteristic::This, }; for grid in &jgrids { bt.push(euler::BoundaryCharacteristics { north: determine_bc(grid.dirn.as_ref()), south: determine_bc(grid.dirs.as_ref()), east: determine_bc(grid.dire.as_ref()), west: determine_bc(grid.dirw.as_ref()), }); } let mut grids: Vec> = Vec::with_capacity(jgrids.len()); for grid in jgrids { grids.push(grid::Grid::new(grid.x, grid.y).unwrap()); } let integration_time: f64 = json["integration_time"].as_number().unwrap().into(); let mut sys = System::new(grids, bt); sys.vortex( 0.0, euler::VortexParameters { x0: 0.0, y0: 0.0, mach: 0.5, rstar: 0.5, eps: 1.0, }, ); let max_n = { let max_nx = sys.grids.iter().map(|g| g.nx()).max().unwrap(); let max_ny = sys.grids.iter().map(|g| g.ny()).max().unwrap(); std::cmp::max(max_nx, max_ny) }; let dt = 0.2 / (max_n as Float); let ntime = (integration_time / dt).round() as usize; let bar = if opt.no_progressbar { indicatif::ProgressBar::hidden() } else { let bar = indicatif::ProgressBar::new(ntime as _); bar.with_style( indicatif::ProgressStyle::default_bar() .template("{wide_bar:.cyan/blue} {pos}/{len} ({eta})"), ) }; for _ in 0..ntime { bar.inc(1); sys.advance(dt); } bar.finish(); dump_to_file(&sys); } fn dump_to_file(sys: &System) { use std::io::prelude::*; let file = std::fs::File::create("output").unwrap(); let mut file = std::io::BufWriter::new(file); let ngrids = sys.grids.len(); file.write_all(&(ngrids as u32).to_le_bytes()).unwrap(); for (grid, s) in sys.grids.iter().zip(&sys.fnow) { file.write_all(&(grid.ny() as u32).to_le_bytes()).unwrap(); file.write_all(&(grid.nx() as u32).to_le_bytes()).unwrap(); for x in grid.x().as_slice().unwrap() { file.write_all(&(x.to_le_bytes())).unwrap(); } for y in grid.y().as_slice().unwrap() { file.write_all(&(y.to_le_bytes())).unwrap(); } for rho in s.rho().as_slice().unwrap() { file.write_all(&(rho.to_le_bytes())).unwrap(); } for rhou in s.rhou().as_slice().unwrap() { file.write_all(&(rhou.to_le_bytes())).unwrap(); } for rhov in s.rhov().as_slice().unwrap() { file.write_all(&(rhov.to_le_bytes())).unwrap(); } for e in s.e().as_slice().unwrap() { file.write_all(&(e.to_le_bytes())).unwrap(); } } }