split advance into subfunctions
This commit is contained in:
		
							
								
								
									
										499
									
								
								src/maxwell.rs
									
									
									
									
									
								
							
							
						
						
									
										499
									
								
								src/maxwell.rs
									
									
									
									
									
								
							@@ -1,4 +1,5 @@
 | 
			
		||||
use super::operators::SbpOperator;
 | 
			
		||||
use super::Grid;
 | 
			
		||||
use ndarray::prelude::*;
 | 
			
		||||
use ndarray::{azip, Zip};
 | 
			
		||||
 | 
			
		||||
@@ -96,11 +97,17 @@ impl Field {
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /// Solving (Au)_x + (Bu)_y
 | 
			
		||||
    /// with:
 | 
			
		||||
    ///        A               B
 | 
			
		||||
    ///  [ 0,  0,  0]    [ 0,  1,  0]
 | 
			
		||||
    ///  [ 0,  0, -1]    [ 1,  0,  0]
 | 
			
		||||
    ///  [ 0, -1,  0]    [ 0,  0,  0]
 | 
			
		||||
    pub(crate) fn advance<SBP>(
 | 
			
		||||
        &self,
 | 
			
		||||
        fut: &mut Self,
 | 
			
		||||
        dt: f32,
 | 
			
		||||
        grid: &super::Grid<SBP>,
 | 
			
		||||
        grid: &Grid<SBP>,
 | 
			
		||||
        work_buffers: Option<&mut WorkBuffers>,
 | 
			
		||||
    ) where
 | 
			
		||||
        SBP: SbpOperator,
 | 
			
		||||
@@ -131,248 +138,7 @@ impl Field {
 | 
			
		||||
                }
 | 
			
		||||
            };
 | 
			
		||||
 | 
			
		||||
            // Solving (Au)_x + (Bu)_y
 | 
			
		||||
            // with:
 | 
			
		||||
            //        A               B
 | 
			
		||||
            //  [ 0,  0,  0]    [ 0,  1,  0]
 | 
			
		||||
            //  [ 0,  0, -1]    [ 1,  0,  0]
 | 
			
		||||
            //  [ 0, -1,  0]    [ 0,  0,  0]
 | 
			
		||||
 | 
			
		||||
            // This flux is rotated by the grid metrics
 | 
			
		||||
            // (Au)_x + (Bu)_y = 1/J [
 | 
			
		||||
            //          (J xi_x Au)_xi + (J eta_x Au)_eta
 | 
			
		||||
            //          (J xi_y Bu)_xi + (J eta_y Bu)_eta
 | 
			
		||||
            //      ]
 | 
			
		||||
            // where J is the grid determinant
 | 
			
		||||
 | 
			
		||||
            // ex = hz_y
 | 
			
		||||
            {
 | 
			
		||||
                ndarray::azip!((a in &mut tmp.0,
 | 
			
		||||
                                &dxi_dy in &grid.detj_dxi_dy,
 | 
			
		||||
                                &hz in &y.hz())
 | 
			
		||||
                    *a = dxi_dy * hz
 | 
			
		||||
                );
 | 
			
		||||
                SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
 | 
			
		||||
 | 
			
		||||
                ndarray::azip!((b in &mut tmp.2,
 | 
			
		||||
                                &deta_dy in &grid.detj_deta_dy,
 | 
			
		||||
                                &hz in &y.hz())
 | 
			
		||||
                    *b = deta_dy * hz
 | 
			
		||||
                );
 | 
			
		||||
                SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
 | 
			
		||||
 | 
			
		||||
                ndarray::azip!((flux in &mut k[i].ex_mut(), &ax in &tmp.1, &by in &tmp.3)
 | 
			
		||||
                    *flux = ax + by
 | 
			
		||||
                );
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            {
 | 
			
		||||
                // hz = -ey_x + ex_y
 | 
			
		||||
                ndarray::azip!((a in &mut tmp.0,
 | 
			
		||||
                                &dxi_dx in &grid.detj_dxi_dx,
 | 
			
		||||
                                &dxi_dy in &grid.detj_dxi_dy,
 | 
			
		||||
                                &ex in &y.ex(),
 | 
			
		||||
                                &ey in &y.ey())
 | 
			
		||||
                    *a = dxi_dx * -ey + dxi_dy * ex
 | 
			
		||||
                );
 | 
			
		||||
                SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
 | 
			
		||||
 | 
			
		||||
                ndarray::azip!((b in &mut tmp.2,
 | 
			
		||||
                                &deta_dx in &grid.detj_deta_dx,
 | 
			
		||||
                                &deta_dy in &grid.detj_deta_dy,
 | 
			
		||||
                                &ex in &y.ex(),
 | 
			
		||||
                                &ey in &y.ey())
 | 
			
		||||
                    *b = deta_dx * -ey + deta_dy * ex
 | 
			
		||||
                );
 | 
			
		||||
                SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
 | 
			
		||||
 | 
			
		||||
                ndarray::azip!((flux in &mut k[i].hz_mut(), &ax in &tmp.1, &by in &tmp.3)
 | 
			
		||||
                    *flux = ax + by
 | 
			
		||||
                );
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // ey = -hz_x
 | 
			
		||||
            {
 | 
			
		||||
                ndarray::azip!((a in &mut tmp.0,
 | 
			
		||||
                                &dxi_dx in &grid.detj_dxi_dx,
 | 
			
		||||
                                &hz in &y.hz())
 | 
			
		||||
                    *a = dxi_dx * -hz
 | 
			
		||||
                );
 | 
			
		||||
                SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
 | 
			
		||||
 | 
			
		||||
                azip!((b in &mut tmp.2,
 | 
			
		||||
                                &deta_dx in &grid.detj_deta_dx,
 | 
			
		||||
                                &hz in &y.hz())
 | 
			
		||||
                    *b = deta_dx * -hz
 | 
			
		||||
                );
 | 
			
		||||
                SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
 | 
			
		||||
 | 
			
		||||
                azip!((flux in &mut k[i].ey_mut(), &ax in &tmp.1, &by in &tmp.3)
 | 
			
		||||
                    *flux = ax + by
 | 
			
		||||
                );
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // Boundary conditions (SAT)
 | 
			
		||||
            let ny = self.ny();
 | 
			
		||||
            let nx = self.nx();
 | 
			
		||||
 | 
			
		||||
            fn positive_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
 | 
			
		||||
                let r = (kx * kx + ky * ky).sqrt();
 | 
			
		||||
                [
 | 
			
		||||
                    [ky * ky / r / 2.0, ky / 2.0, -kx * ky / r / 2.0],
 | 
			
		||||
                    [ky / 2.0, r / 2.0, -kx / 2.0],
 | 
			
		||||
                    [-kx * ky / r / 2.0, -kx / 2.0, kx * kx / r / 2.0],
 | 
			
		||||
                ]
 | 
			
		||||
            }
 | 
			
		||||
            fn negative_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
 | 
			
		||||
                let r = (kx * kx + ky * ky).sqrt();
 | 
			
		||||
                [
 | 
			
		||||
                    [-ky * ky / r / 2.0, ky / 2.0, kx * ky / r / 2.0],
 | 
			
		||||
                    [ky / 2.0, -r / 2.0, -kx / 2.0],
 | 
			
		||||
                    [kx * ky / r / 2.0, -kx / 2.0, -kx * kx / r / 2.0],
 | 
			
		||||
                ]
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32);
 | 
			
		||||
            let g = y.slice(s![.., .., 0]);
 | 
			
		||||
            let v = y.slice(s![.., .., nx - 1]);
 | 
			
		||||
            {
 | 
			
		||||
                // East boundary
 | 
			
		||||
                let mut k = k[i].slice_mut(s![.., .., nx - 1]);
 | 
			
		||||
 | 
			
		||||
                for j in 0..ny {
 | 
			
		||||
                    // East boundary, positive flux
 | 
			
		||||
                    let tau = -1.0;
 | 
			
		||||
 | 
			
		||||
                    let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
                    let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
                    let kx = grid.detj_dxi_dx[(j, nx - 1)];
 | 
			
		||||
                    let ky = grid.detj_dxi_dy[(j, nx - 1)];
 | 
			
		||||
 | 
			
		||||
                    let plus = positive_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
                    k[(0, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (plus[0][0] * (v.0 - g.0)
 | 
			
		||||
                            + plus[0][1] * (v.1 - g.1)
 | 
			
		||||
                            + plus[0][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(1, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (plus[1][0] * (v.0 - g.0)
 | 
			
		||||
                            + plus[1][1] * (v.1 - g.1)
 | 
			
		||||
                            + plus[1][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(2, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (plus[2][0] * (v.0 - g.0)
 | 
			
		||||
                            + plus[2][1] * (v.1 - g.1)
 | 
			
		||||
                            + plus[2][2] * (v.2 - g.2));
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            {
 | 
			
		||||
                // West boundary, negative flux
 | 
			
		||||
                let mut k = k[i].slice_mut(s![.., .., 0]);
 | 
			
		||||
                let (v, g) = (g, v);
 | 
			
		||||
                for j in 0..ny {
 | 
			
		||||
                    let tau = 1.0;
 | 
			
		||||
 | 
			
		||||
                    let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
                    let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
                    let kx = grid.detj_dxi_dx[(j, 0)];
 | 
			
		||||
                    let ky = grid.detj_dxi_dy[(j, 0)];
 | 
			
		||||
 | 
			
		||||
                    let minus = negative_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
                    k[(0, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (minus[0][0] * (v.0 - g.0)
 | 
			
		||||
                            + minus[0][1] * (v.1 - g.1)
 | 
			
		||||
                            + minus[0][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(1, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (minus[1][0] * (v.0 - g.0)
 | 
			
		||||
                            + minus[1][1] * (v.1 - g.1)
 | 
			
		||||
                            + minus[1][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(2, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (minus[2][0] * (v.0 - g.0)
 | 
			
		||||
                            + minus[2][1] * (v.1 - g.1)
 | 
			
		||||
                            + minus[2][2] * (v.2 - g.2));
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32);
 | 
			
		||||
            let g = y.slice(s![.., 0, ..]);
 | 
			
		||||
            let v = y.slice(s![.., ny - 1, ..]);
 | 
			
		||||
            {
 | 
			
		||||
                let mut k = k[i].slice_mut(s![.., ny - 1, ..]);
 | 
			
		||||
 | 
			
		||||
                for j in 0..nx {
 | 
			
		||||
                    // North boundary, positive flux
 | 
			
		||||
                    let tau = -1.0;
 | 
			
		||||
                    let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
                    let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
                    let kx = grid.detj_deta_dx[(ny - 1, j)];
 | 
			
		||||
                    let ky = grid.detj_deta_dy[(ny - 1, j)];
 | 
			
		||||
 | 
			
		||||
                    let plus = positive_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
                    k[(0, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (plus[0][0] * (v.0 - g.0)
 | 
			
		||||
                            + plus[0][1] * (v.1 - g.1)
 | 
			
		||||
                            + plus[0][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(1, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (plus[1][0] * (v.0 - g.0)
 | 
			
		||||
                            + plus[1][1] * (v.1 - g.1)
 | 
			
		||||
                            + plus[1][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(2, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (plus[2][0] * (v.0 - g.0)
 | 
			
		||||
                            + plus[2][1] * (v.1 - g.1)
 | 
			
		||||
                            + plus[2][2] * (v.2 - g.2));
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            {
 | 
			
		||||
                let (v, g) = (g, v);
 | 
			
		||||
                let mut k = k[i].slice_mut(s![.., 0, ..]);
 | 
			
		||||
                for j in 0..nx {
 | 
			
		||||
                    // South boundary, negative flux
 | 
			
		||||
                    let tau = 1.0;
 | 
			
		||||
                    let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
                    let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
                    let kx = grid.detj_deta_dx[(0, j)];
 | 
			
		||||
                    let ky = grid.detj_deta_dy[(0, j)];
 | 
			
		||||
 | 
			
		||||
                    let minus = negative_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
                    k[(0, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (minus[0][0] * (v.0 - g.0)
 | 
			
		||||
                            + minus[0][1] * (v.1 - g.1)
 | 
			
		||||
                            + minus[0][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(1, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (minus[1][0] * (v.0 - g.0)
 | 
			
		||||
                            + minus[1][1] * (v.1 - g.1)
 | 
			
		||||
                            + minus[1][2] * (v.2 - g.2));
 | 
			
		||||
                    k[(2, j)] += tau
 | 
			
		||||
                        * hinv
 | 
			
		||||
                        * (minus[2][0] * (v.0 - g.0)
 | 
			
		||||
                            + minus[2][1] * (v.1 - g.1)
 | 
			
		||||
                            + minus[2][2] * (v.2 - g.2));
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            azip!((k in &mut k[i].0,
 | 
			
		||||
                            &detj in &grid.detj.broadcast((3, ny, nx)).unwrap()) {
 | 
			
		||||
                *k /= detj;
 | 
			
		||||
            });
 | 
			
		||||
            RHS(&mut k[i], &y, grid, tmp);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        Zip::from(&mut fut.0)
 | 
			
		||||
@@ -387,6 +153,253 @@ impl Field {
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#[allow(non_snake_case)]
 | 
			
		||||
/// This flux is rotated by the grid metrics
 | 
			
		||||
/// (Au)_x + (Bu)_y = 1/J [
 | 
			
		||||
///          (J xi_x Au)_xi + (J eta_x Au)_eta
 | 
			
		||||
///          (J xi_y Bu)_xi + (J eta_y Bu)_eta
 | 
			
		||||
///      ]
 | 
			
		||||
/// where J is the grid determinant
 | 
			
		||||
///
 | 
			
		||||
/// This is used both in fluxes and SAT terms
 | 
			
		||||
fn RHS<SBP: SbpOperator>(
 | 
			
		||||
    k: &mut Field,
 | 
			
		||||
    y: &Field,
 | 
			
		||||
    grid: &Grid<SBP>,
 | 
			
		||||
    tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
 | 
			
		||||
) {
 | 
			
		||||
    fluxes(k, y, grid, tmp);
 | 
			
		||||
 | 
			
		||||
    SAT_characteristics(k, y, grid);
 | 
			
		||||
 | 
			
		||||
    azip!((k in &mut k.0,
 | 
			
		||||
                    &detj in &grid.detj.broadcast((3, y.ny(), y.nx())).unwrap()) {
 | 
			
		||||
        *k /= detj;
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn fluxes<SBP: SbpOperator>(
 | 
			
		||||
    k: &mut Field,
 | 
			
		||||
    y: &Field,
 | 
			
		||||
    grid: &Grid<SBP>,
 | 
			
		||||
    tmp: &mut (Array2<f32>, Array2<f32>, Array2<f32>, Array2<f32>),
 | 
			
		||||
) {
 | 
			
		||||
    // ex = hz_y
 | 
			
		||||
    {
 | 
			
		||||
        ndarray::azip!((a in &mut tmp.0,
 | 
			
		||||
                        &dxi_dy in &grid.detj_dxi_dy,
 | 
			
		||||
                        &hz in &y.hz())
 | 
			
		||||
            *a = dxi_dy * hz
 | 
			
		||||
        );
 | 
			
		||||
        SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
 | 
			
		||||
 | 
			
		||||
        ndarray::azip!((b in &mut tmp.2,
 | 
			
		||||
                        &deta_dy in &grid.detj_deta_dy,
 | 
			
		||||
                        &hz in &y.hz())
 | 
			
		||||
            *b = deta_dy * hz
 | 
			
		||||
        );
 | 
			
		||||
        SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
 | 
			
		||||
 | 
			
		||||
        ndarray::azip!((flux in &mut k.ex_mut(), &ax in &tmp.1, &by in &tmp.3)
 | 
			
		||||
            *flux = ax + by
 | 
			
		||||
        );
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
        // hz = -ey_x + ex_y
 | 
			
		||||
        ndarray::azip!((a in &mut tmp.0,
 | 
			
		||||
                        &dxi_dx in &grid.detj_dxi_dx,
 | 
			
		||||
                        &dxi_dy in &grid.detj_dxi_dy,
 | 
			
		||||
                        &ex in &y.ex(),
 | 
			
		||||
                        &ey in &y.ey())
 | 
			
		||||
            *a = dxi_dx * -ey + dxi_dy * ex
 | 
			
		||||
        );
 | 
			
		||||
        SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
 | 
			
		||||
 | 
			
		||||
        ndarray::azip!((b in &mut tmp.2,
 | 
			
		||||
                        &deta_dx in &grid.detj_deta_dx,
 | 
			
		||||
                        &deta_dy in &grid.detj_deta_dy,
 | 
			
		||||
                        &ex in &y.ex(),
 | 
			
		||||
                        &ey in &y.ey())
 | 
			
		||||
            *b = deta_dx * -ey + deta_dy * ex
 | 
			
		||||
        );
 | 
			
		||||
        SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
 | 
			
		||||
 | 
			
		||||
        ndarray::azip!((flux in &mut k.hz_mut(), &ax in &tmp.1, &by in &tmp.3)
 | 
			
		||||
            *flux = ax + by
 | 
			
		||||
        );
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // ey = -hz_x
 | 
			
		||||
    {
 | 
			
		||||
        ndarray::azip!((a in &mut tmp.0,
 | 
			
		||||
                        &dxi_dx in &grid.detj_dxi_dx,
 | 
			
		||||
                        &hz in &y.hz())
 | 
			
		||||
            *a = dxi_dx * -hz
 | 
			
		||||
        );
 | 
			
		||||
        SBP::diffxi(tmp.0.view(), tmp.1.view_mut());
 | 
			
		||||
 | 
			
		||||
        azip!((b in &mut tmp.2,
 | 
			
		||||
                        &deta_dx in &grid.detj_deta_dx,
 | 
			
		||||
                        &hz in &y.hz())
 | 
			
		||||
            *b = deta_dx * -hz
 | 
			
		||||
        );
 | 
			
		||||
        SBP::diffeta(tmp.2.view(), tmp.3.view_mut());
 | 
			
		||||
 | 
			
		||||
        azip!((flux in &mut k.ey_mut(), &ax in &tmp.1, &by in &tmp.3)
 | 
			
		||||
            *flux = ax + by
 | 
			
		||||
        );
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#[allow(non_snake_case)]
 | 
			
		||||
fn SAT_characteristics<SBP: SbpOperator>(k: &mut Field, y: &Field, grid: &Grid<SBP>) {
 | 
			
		||||
    // Boundary conditions (SAT)
 | 
			
		||||
    let ny = y.ny();
 | 
			
		||||
    let nx = y.nx();
 | 
			
		||||
 | 
			
		||||
    fn positive_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
 | 
			
		||||
        let r = (kx * kx + ky * ky).sqrt();
 | 
			
		||||
        [
 | 
			
		||||
            [ky * ky / r / 2.0, ky / 2.0, -kx * ky / r / 2.0],
 | 
			
		||||
            [ky / 2.0, r / 2.0, -kx / 2.0],
 | 
			
		||||
            [-kx * ky / r / 2.0, -kx / 2.0, kx * kx / r / 2.0],
 | 
			
		||||
        ]
 | 
			
		||||
    }
 | 
			
		||||
    fn negative_flux(kx: f32, ky: f32) -> [[f32; 3]; 3] {
 | 
			
		||||
        let r = (kx * kx + ky * ky).sqrt();
 | 
			
		||||
        [
 | 
			
		||||
            [-ky * ky / r / 2.0, ky / 2.0, kx * ky / r / 2.0],
 | 
			
		||||
            [ky / 2.0, -r / 2.0, -kx / 2.0],
 | 
			
		||||
            [kx * ky / r / 2.0, -kx / 2.0, -kx * kx / r / 2.0],
 | 
			
		||||
        ]
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    let hinv = 1.0 / (SBP::h()[0] / (nx - 1) as f32);
 | 
			
		||||
    let g = y.slice(s![.., .., 0]);
 | 
			
		||||
    let v = y.slice(s![.., .., nx - 1]);
 | 
			
		||||
    {
 | 
			
		||||
        // East boundary
 | 
			
		||||
        let mut k = k.slice_mut(s![.., .., nx - 1]);
 | 
			
		||||
 | 
			
		||||
        for j in 0..ny {
 | 
			
		||||
            // East boundary, positive flux
 | 
			
		||||
            let tau = -1.0;
 | 
			
		||||
 | 
			
		||||
            let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
            let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
            let kx = grid.detj_dxi_dx[(j, nx - 1)];
 | 
			
		||||
            let ky = grid.detj_dxi_dy[(j, nx - 1)];
 | 
			
		||||
 | 
			
		||||
            let plus = positive_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
            k[(0, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (plus[0][0] * (v.0 - g.0) + plus[0][1] * (v.1 - g.1) + plus[0][2] * (v.2 - g.2));
 | 
			
		||||
            k[(1, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (plus[1][0] * (v.0 - g.0) + plus[1][1] * (v.1 - g.1) + plus[1][2] * (v.2 - g.2));
 | 
			
		||||
            k[(2, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (plus[2][0] * (v.0 - g.0) + plus[2][1] * (v.1 - g.1) + plus[2][2] * (v.2 - g.2));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        // West boundary, negative flux
 | 
			
		||||
        let mut k = k.slice_mut(s![.., .., 0]);
 | 
			
		||||
        let (v, g) = (g, v);
 | 
			
		||||
        for j in 0..ny {
 | 
			
		||||
            let tau = 1.0;
 | 
			
		||||
 | 
			
		||||
            let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
            let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
            let kx = grid.detj_dxi_dx[(j, 0)];
 | 
			
		||||
            let ky = grid.detj_dxi_dy[(j, 0)];
 | 
			
		||||
 | 
			
		||||
            let minus = negative_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
            k[(0, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (minus[0][0] * (v.0 - g.0)
 | 
			
		||||
                    + minus[0][1] * (v.1 - g.1)
 | 
			
		||||
                    + minus[0][2] * (v.2 - g.2));
 | 
			
		||||
            k[(1, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (minus[1][0] * (v.0 - g.0)
 | 
			
		||||
                    + minus[1][1] * (v.1 - g.1)
 | 
			
		||||
                    + minus[1][2] * (v.2 - g.2));
 | 
			
		||||
            k[(2, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (minus[2][0] * (v.0 - g.0)
 | 
			
		||||
                    + minus[2][1] * (v.1 - g.1)
 | 
			
		||||
                    + minus[2][2] * (v.2 - g.2));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    let hinv = 1.0 / (SBP::h()[0] / (ny - 1) as f32);
 | 
			
		||||
    let g = y.slice(s![.., 0, ..]);
 | 
			
		||||
    let v = y.slice(s![.., ny - 1, ..]);
 | 
			
		||||
    {
 | 
			
		||||
        let mut k = k.slice_mut(s![.., ny - 1, ..]);
 | 
			
		||||
 | 
			
		||||
        for j in 0..nx {
 | 
			
		||||
            // North boundary, positive flux
 | 
			
		||||
            let tau = -1.0;
 | 
			
		||||
            let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
            let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
            let kx = grid.detj_deta_dx[(ny - 1, j)];
 | 
			
		||||
            let ky = grid.detj_deta_dy[(ny - 1, j)];
 | 
			
		||||
 | 
			
		||||
            let plus = positive_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
            k[(0, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (plus[0][0] * (v.0 - g.0) + plus[0][1] * (v.1 - g.1) + plus[0][2] * (v.2 - g.2));
 | 
			
		||||
            k[(1, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (plus[1][0] * (v.0 - g.0) + plus[1][1] * (v.1 - g.1) + plus[1][2] * (v.2 - g.2));
 | 
			
		||||
            k[(2, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (plus[2][0] * (v.0 - g.0) + plus[2][1] * (v.1 - g.1) + plus[2][2] * (v.2 - g.2));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
        let (v, g) = (g, v);
 | 
			
		||||
        let mut k = k.slice_mut(s![.., 0, ..]);
 | 
			
		||||
        for j in 0..nx {
 | 
			
		||||
            // South boundary, negative flux
 | 
			
		||||
            let tau = 1.0;
 | 
			
		||||
            let v = (v[(0, j)], v[(1, j)], v[(2, j)]);
 | 
			
		||||
            let g = (g[(0, j)], g[(1, j)], g[(2, j)]);
 | 
			
		||||
 | 
			
		||||
            let kx = grid.detj_deta_dx[(0, j)];
 | 
			
		||||
            let ky = grid.detj_deta_dy[(0, j)];
 | 
			
		||||
 | 
			
		||||
            let minus = negative_flux(kx, ky);
 | 
			
		||||
 | 
			
		||||
            k[(0, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (minus[0][0] * (v.0 - g.0)
 | 
			
		||||
                    + minus[0][1] * (v.1 - g.1)
 | 
			
		||||
                    + minus[0][2] * (v.2 - g.2));
 | 
			
		||||
            k[(1, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (minus[1][0] * (v.0 - g.0)
 | 
			
		||||
                    + minus[1][1] * (v.1 - g.1)
 | 
			
		||||
                    + minus[1][2] * (v.2 - g.2));
 | 
			
		||||
            k[(2, j)] += tau
 | 
			
		||||
                * hinv
 | 
			
		||||
                * (minus[2][0] * (v.0 - g.0)
 | 
			
		||||
                    + minus[2][1] * (v.1 - g.1)
 | 
			
		||||
                    + minus[2][2] * (v.2 - g.2));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub struct WorkBuffers {
 | 
			
		||||
    y: Field,
 | 
			
		||||
    buf: [Field; 4],
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user