SummationByParts/sbp/src/operators.rs

517 lines
16 KiB
Rust
Raw Normal View History

2020-01-29 18:36:16 +00:00
#![allow(clippy::excessive_precision)]
#![allow(clippy::unreadable_literal)]
use crate::Float;
2020-04-08 21:07:14 +00:00
use ndarray::{ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2};
2019-08-09 14:49:19 +00:00
2020-04-15 15:17:48 +00:00
pub trait SbpOperator1d: Send + Sync {
fn diff(&self, prev: ArrayView1<Float>, fut: ArrayViewMut1<Float>);
fn h(&self) -> &'static [Float];
fn is_h2(&self) -> bool {
false
}
}
2020-04-15 15:17:48 +00:00
pub trait SbpOperator2d: Send + Sync {
fn diffxi(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>);
fn diffeta(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>);
fn hxi(&self) -> &'static [Float];
fn heta(&self) -> &'static [Float];
fn is_h2xi(&self) -> bool;
fn is_h2eta(&self) -> bool;
}
2020-04-15 15:17:48 +00:00
impl<SBPeta: SbpOperator1d, SBPxi: SbpOperator1d> SbpOperator2d for (&SBPeta, &SBPxi) {
2020-04-14 22:37:46 +00:00
default fn diffxi(&self, prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>) {
assert_eq!(prev.shape(), fut.shape());
for (r0, r1) in prev.outer_iter().zip(fut.outer_iter_mut()) {
self.1.diff(r0, r1)
}
}
fn diffeta(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
let ba = (self.1, self.0);
ba.diffxi(prev.reversed_axes(), fut.reversed_axes())
}
fn hxi(&self) -> &'static [Float] {
self.1.h()
}
fn heta(&self) -> &'static [Float] {
self.0.h()
}
fn is_h2xi(&self) -> bool {
self.1.is_h2()
}
fn is_h2eta(&self) -> bool {
self.0.is_h2()
}
}
2020-04-15 15:17:48 +00:00
impl<SBP: SbpOperator1d + Copy> SbpOperator2d for SBP {
2020-04-14 22:37:46 +00:00
fn diffxi(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
2020-04-15 15:17:48 +00:00
<(&SBP, &SBP) as SbpOperator2d>::diffxi(&(self, self), prev, fut)
2020-04-08 21:07:14 +00:00
}
2020-04-14 19:59:02 +00:00
fn diffeta(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
2020-04-15 15:17:48 +00:00
<(&SBP, &SBP) as SbpOperator2d>::diffeta(&(self, self), prev, fut)
2020-04-08 21:07:14 +00:00
}
fn hxi(&self) -> &'static [Float] {
2020-04-15 15:17:48 +00:00
<(&SBP, &SBP) as SbpOperator2d>::hxi(&(self, self))
}
fn heta(&self) -> &'static [Float] {
2020-04-15 15:17:48 +00:00
<(&SBP, &SBP) as SbpOperator2d>::heta(&(self, self))
}
fn is_h2xi(&self) -> bool {
2020-04-15 15:17:48 +00:00
<(&SBP, &SBP) as SbpOperator2d>::is_h2xi(&(self, self))
}
fn is_h2eta(&self) -> bool {
2020-04-15 15:17:48 +00:00
<(&SBP, &SBP) as SbpOperator2d>::is_h2eta(&(self, self))
}
}
2020-04-15 15:17:48 +00:00
pub trait UpwindOperator1d: SbpOperator1d + Send + Sync {
fn diss(&self, prev: ArrayView1<Float>, fut: ArrayViewMut1<Float>);
2020-04-15 15:36:45 +00:00
fn as_sbp(&self) -> &dyn SbpOperator1d;
}
2020-04-15 15:17:48 +00:00
pub trait UpwindOperator2d: SbpOperator2d + Send + Sync {
fn dissxi(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>);
fn disseta(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>);
2020-04-15 15:36:45 +00:00
fn as_sbp(&self) -> &dyn SbpOperator2d;
}
2020-04-15 15:17:48 +00:00
impl<UOeta: UpwindOperator1d, UOxi: UpwindOperator1d> UpwindOperator2d for (&UOeta, &UOxi) {
2020-04-14 22:37:46 +00:00
default fn dissxi(&self, prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>) {
assert_eq!(prev.shape(), fut.shape());
for (r0, r1) in prev.outer_iter().zip(fut.outer_iter_mut()) {
self.1.diss(r0, r1);
}
}
fn disseta(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
let ba = (self.1, self.0);
ba.dissxi(prev.reversed_axes(), fut.reversed_axes())
2020-04-12 17:27:18 +00:00
}
2020-04-15 15:36:45 +00:00
fn as_sbp(&self) -> &dyn SbpOperator2d {
self
}
2019-08-09 14:49:19 +00:00
}
2020-04-15 15:17:48 +00:00
impl<UO: UpwindOperator1d + Copy> UpwindOperator2d for UO {
2020-04-14 22:37:46 +00:00
fn dissxi(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
2020-04-15 15:17:48 +00:00
<(&UO, &UO) as UpwindOperator2d>::dissxi(&(self, self), prev, fut)
2020-04-08 21:07:14 +00:00
}
2020-04-14 19:59:02 +00:00
fn disseta(&self, prev: ArrayView2<Float>, fut: ArrayViewMut2<Float>) {
2020-04-15 15:17:48 +00:00
<(&UO, &UO) as UpwindOperator2d>::disseta(&(self, self), prev, fut)
2020-04-08 21:07:14 +00:00
}
2020-04-15 15:36:45 +00:00
fn as_sbp(&self) -> &dyn SbpOperator2d {
self
}
2019-12-12 19:32:38 +00:00
}
2020-04-11 13:19:34 +00:00
pub trait InterpolationOperator: Send + Sync {
fn fine2coarse(&self, fine: ArrayView1<Float>, coarse: ArrayViewMut1<Float>);
fn coarse2fine(&self, coarse: ArrayView1<Float>, fine: ArrayViewMut1<Float>);
2020-04-11 13:19:34 +00:00
}
2020-04-12 15:42:18 +00:00
#[inline(always)]
2020-04-30 22:09:46 +00:00
fn diff_op_1d(
2020-04-21 20:15:47 +00:00
block: &[&[Float]],
diag: &[Float],
2020-04-30 22:09:46 +00:00
symmetry: Symmetry,
optype: OperatorType,
2020-04-12 15:42:18 +00:00
prev: ArrayView1<Float>,
mut fut: ArrayViewMut1<Float>,
) {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[0];
2020-04-21 20:15:47 +00:00
assert!(nx >= 2 * block.len());
2020-04-12 15:42:18 +00:00
2020-04-30 22:09:46 +00:00
let dx = if optype == OperatorType::H2 {
2020-04-12 17:27:18 +00:00
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
2020-04-12 15:42:18 +00:00
let idx = 1.0 / dx;
2020-04-21 20:15:47 +00:00
for (bl, f) in block.iter().zip(&mut fut) {
let diff = bl
.iter()
.zip(prev.iter())
.map(|(x, y)| x * y)
.sum::<Float>();
2020-04-12 15:42:18 +00:00
*f = diff * idx;
}
2019-12-13 23:29:54 +00:00
2020-04-12 15:42:18 +00:00
// The window needs to be aligned to the diagonal elements,
// based on the block size
2020-04-21 20:15:47 +00:00
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
2020-04-12 15:42:18 +00:00
for (window, f) in prev
.windows(diag.len())
.into_iter()
.skip(window_elems_to_skip)
2020-04-21 20:15:47 +00:00
.zip(fut.iter_mut().skip(block.len()))
.take(nx - 2 * block.len())
2020-04-12 15:42:18 +00:00
{
2020-04-21 20:15:47 +00:00
let diff = diag.iter().zip(&window).map(|(x, y)| x * y).sum::<Float>();
2020-04-12 15:42:18 +00:00
*f = diff * idx;
}
2019-12-13 23:29:54 +00:00
2020-04-21 20:15:47 +00:00
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
let diff = bl
.iter()
.zip(prev.iter().rev())
.map(|(x, y)| x * y)
.sum::<Float>();
2020-04-30 22:09:46 +00:00
*f = idx
* if symmetry == Symmetry::Symmetric {
diff
} else {
-diff
};
2020-04-12 15:42:18 +00:00
}
2019-12-13 23:29:54 +00:00
}
2020-04-30 22:09:46 +00:00
#[derive(PartialEq, Copy, Clone)]
enum Symmetry {
Symmetric,
AntiSymmetric,
}
#[derive(PartialEq, Copy, Clone)]
enum OperatorType {
Normal,
H2,
}
2020-05-01 15:44:33 +00:00
#[inline(always)]
#[allow(unused)]
fn diff_op_col_naive(
block: &'static [&'static [Float]],
diag: &'static [Float],
symmetry: Symmetry,
optype: OperatorType,
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
#[inline(always)]
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * block.len());
assert_eq!(prev.strides()[0], 1);
assert_eq!(fut.strides()[0], 1);
let dx = if optype == OperatorType::H2 {
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
fut.fill(0.0);
// First block
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1))) {
debug_assert_eq!(fut.len(), prev.shape()[0]);
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
debug_assert_eq!(prev.len(), fut.len());
fut.scaled_add(idx * bl, &prev);
}
}
let half_diag_width = (diag.len() - 1) / 2;
assert!(half_diag_width <= block.len());
// Diagonal entries
for (ifut, mut fut) in fut
.axis_iter_mut(ndarray::Axis(1))
.enumerate()
.skip(block.len())
.take(nx - 2 * block.len())
{
for (id, &d) in diag.iter().enumerate() {
let offset = ifut - half_diag_width + id;
fut.scaled_add(idx * d, &prev.slice(ndarray::s![.., offset]))
}
}
// End block
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1)).rev()) {
fut.fill(0.0);
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1)).rev()) {
if symmetry == Symmetry::Symmetric {
fut.scaled_add(idx * bl, &prev);
} else {
fut.scaled_add(-idx * bl, &prev);
}
}
}
}
}
2020-04-21 22:32:49 +00:00
#[inline(always)]
2020-04-30 22:09:46 +00:00
fn diff_op_col(
2020-04-29 17:59:48 +00:00
block: &'static [&'static [Float]],
diag: &'static [Float],
2020-04-30 22:09:46 +00:00
symmetry: Symmetry,
optype: OperatorType,
2020-05-01 15:44:33 +00:00
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
diff_op_col_simd(block, diag, symmetry, optype)
}
#[inline(always)]
fn diff_op_col_simd(
block: &'static [&'static [Float]],
diag: &'static [Float],
symmetry: Symmetry,
optype: OperatorType,
2020-04-29 17:59:48 +00:00
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
#[inline(always)]
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * block.len());
2020-04-21 22:32:49 +00:00
2020-04-29 17:59:48 +00:00
assert_eq!(prev.strides()[0], 1);
assert_eq!(fut.strides()[0], 1);
2020-04-21 22:32:49 +00:00
2020-04-30 22:09:46 +00:00
let dx = if optype == OperatorType::H2 {
2020-04-29 17:59:48 +00:00
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
2020-04-21 22:32:49 +00:00
2020-04-29 21:06:19 +00:00
#[cfg(not(feature = "f32"))]
type SimdT = packed_simd::f64x8;
#[cfg(feature = "f32")]
type SimdT = packed_simd::f32x16;
let ny = prev.shape()[0];
2020-05-01 16:21:14 +00:00
// How many elements that can be simdified
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
2020-04-21 22:32:49 +00:00
2020-04-29 17:59:48 +00:00
// First block
2020-05-01 16:21:14 +00:00
{
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1))) {
fut.fill(0.0);
debug_assert_eq!(fut.len(), prev.shape()[0]);
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
debug_assert_eq!(prev.len(), fut.len());
fut.scaled_add(idx * bl, &prev);
}
2020-04-29 17:59:48 +00:00
}
2020-04-21 22:32:49 +00:00
}
2020-05-01 16:21:14 +00:00
// Diagonal elements
{
let half_diag_width = (diag.len() - 1) / 2;
assert!(half_diag_width <= block.len());
let fut_base_ptr = fut.as_mut_ptr();
let fut_stride = fut.strides()[1];
let fut_ptr = |j, i| {
debug_assert!(j < ny && i < nx);
unsafe { fut_base_ptr.offset(fut_stride * i as isize + j as isize) }
};
2020-04-29 17:59:48 +00:00
2020-05-01 16:21:14 +00:00
let prev_base_ptr = prev.as_ptr();
let prev_stride = prev.strides()[1];
let prev_ptr = |j, i| {
debug_assert!(j < ny && i < nx);
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
};
assert_eq!(fut_stride, prev_stride);
for ifut in block.len()..nx - block.len() {
for j in (0..simdified).step_by(SimdT::lanes()) {
let index_to_simd = |(j, i)| unsafe {
// j never moves past end of slice due to step_by and
// rounding down
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
prev_ptr(j, i),
SimdT::lanes(),
))
};
let mut f = SimdT::splat(0.0);
for (id, &d) in diag.iter().enumerate() {
let offset = ifut - half_diag_width + id;
f = index_to_simd((j, offset)).mul_adde(SimdT::splat(d), f);
}
f = f * idx;
unsafe {
// puts simd along stride 1, j never goes past end of slice
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
fut_ptr(j, ifut),
SimdT::lanes(),
));
}
2020-04-29 21:06:19 +00:00
}
2020-05-01 16:21:14 +00:00
for j in simdified..ny {
let mut f = 0.0;
for (id, &d) in diag.iter().enumerate() {
let offset = ifut - half_diag_width + id;
unsafe {
f += d * *prev_ptr(j, offset);
}
}
unsafe {
*fut_ptr(j, ifut) = idx * f;
}
2020-04-29 21:06:19 +00:00
}
2020-04-29 17:59:48 +00:00
}
2020-04-21 22:32:49 +00:00
}
2020-05-01 16:21:14 +00:00
2020-04-29 17:59:48 +00:00
// End block
2020-05-01 16:21:14 +00:00
{
for (bl, mut fut) in block.iter().zip(fut.axis_iter_mut(ndarray::Axis(1)).rev()) {
fut.fill(0.0);
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1)).rev()) {
if symmetry == Symmetry::Symmetric {
fut.scaled_add(idx * bl, &prev);
} else {
fut.scaled_add(-idx * bl, &prev);
}
2020-04-29 17:59:48 +00:00
}
2020-04-21 22:32:49 +00:00
}
}
}
}
2020-04-21 21:19:02 +00:00
#[inline(always)]
2020-04-30 22:09:46 +00:00
fn diff_op_row(
2020-04-29 17:52:55 +00:00
block: &'static [&'static [Float]],
diag: &'static [Float],
2020-04-30 22:09:46 +00:00
symmetry: Symmetry,
optype: OperatorType,
2020-04-29 17:52:55 +00:00
) -> impl Fn(ArrayView2<Float>, ArrayViewMut2<Float>) {
#[inline(always)]
move |prev: ArrayView2<Float>, mut fut: ArrayViewMut2<Float>| {
assert_eq!(prev.shape(), fut.shape());
let nx = prev.shape()[1];
assert!(nx >= 2 * block.len());
assert_eq!(prev.strides()[1], 1);
assert_eq!(fut.strides()[1], 1);
2020-04-30 22:09:46 +00:00
let dx = if optype == OperatorType::H2 {
2020-04-29 17:52:55 +00:00
1.0 / (nx - 2) as Float
} else {
1.0 / (nx - 1) as Float
};
let idx = 1.0 / dx;
for (prev, mut fut) in prev
.axis_iter(ndarray::Axis(0))
.zip(fut.axis_iter_mut(ndarray::Axis(0)))
2020-04-21 21:19:02 +00:00
{
2020-04-29 17:52:55 +00:00
let prev = prev.as_slice().unwrap();
let fut = fut.as_slice_mut().unwrap();
for (bl, f) in block.iter().zip(fut.iter_mut()) {
let diff = bl
.iter()
.zip(prev.iter())
.map(|(x, y)| x * y)
.sum::<Float>();
*f = diff * idx;
}
2020-04-21 21:19:02 +00:00
2020-04-29 17:52:55 +00:00
// The window needs to be aligned to the diagonal elements,
// based on the block size
let window_elems_to_skip = block.len() - ((diag.len() - 1) / 2);
for (window, f) in prev
.windows(diag.len())
.skip(window_elems_to_skip)
.zip(fut.iter_mut().skip(block.len()))
.take(nx - 2 * block.len())
{
let diff = diag.iter().zip(window).map(|(&x, &y)| x * y).sum::<Float>();
*f = diff * idx;
}
for (bl, f) in block.iter().zip(fut.iter_mut().rev()) {
let diff = bl
.iter()
.zip(prev.iter().rev())
.map(|(x, y)| x * y)
.sum::<Float>();
2020-04-21 21:19:02 +00:00
2020-04-30 22:09:46 +00:00
*f = idx
* if symmetry == Symmetry::Symmetric {
diff
} else {
-diff
};
2020-04-29 17:52:55 +00:00
}
2020-04-21 21:19:02 +00:00
}
}
}
2019-09-03 17:41:49 +00:00
mod upwind4;
pub use upwind4::Upwind4;
2019-12-15 16:49:41 +00:00
mod upwind9;
pub use upwind9::Upwind9;
2020-04-12 17:27:18 +00:00
mod upwind4h2;
pub use upwind4h2::Upwind4h2;
2020-04-13 20:08:18 +00:00
mod upwind9h2;
pub use upwind9h2::Upwind9h2;
2020-04-12 17:27:18 +00:00
2019-12-15 16:27:31 +00:00
mod traditional4;
pub use traditional4::SBP4;
2019-12-15 16:49:41 +00:00
mod traditional8;
pub use traditional8::SBP8;
2020-02-29 09:53:20 +00:00
2020-04-11 13:19:34 +00:00
mod interpolation;
2020-04-15 21:58:39 +00:00
pub use interpolation::{Interpolation4, Interpolation8, Interpolation9, Interpolation9h2};
2020-04-11 13:19:34 +00:00
2020-02-29 09:53:20 +00:00
#[cfg(test)]
pub(crate) mod testing {
use super::*;
use ndarray::prelude::*;
pub(crate) fn grid_eval<F: Fn(Float, Float) -> Float>(
n: (usize, usize),
f: F,
) -> Array2<Float> {
let nx = n.1;
let dx = 1.0 / (nx - 1) as Float;
let ny = n.0;
let dy = 1.0 / (ny - 1) as Float;
Array2::from_shape_fn(n, |(j, i)| {
let x = dx * i as Float;
let y = dy * j as Float;
f(x, y)
})
}
pub(crate) fn check_operator_on<SBP, F, FX, FY>(
2020-04-14 19:59:02 +00:00
op: SBP,
2020-02-29 09:53:20 +00:00
n: (usize, usize),
f: F,
dfdx: FX,
dfdy: FY,
eps: Float,
) where
SBP: SbpOperator2d,
2020-02-29 09:53:20 +00:00
F: Fn(Float, Float) -> Float,
FX: Fn(Float, Float) -> Float,
FY: Fn(Float, Float) -> Float,
{
let mut y = Array2::zeros(n);
let x = grid_eval(n, f);
y.fill(0.0);
2020-04-14 19:59:02 +00:00
op.diffxi(x.view(), y.view_mut());
2020-02-29 09:53:20 +00:00
approx::assert_abs_diff_eq!(&y, &grid_eval(n, dfdx), epsilon = eps);
y.fill(0.0);
2020-04-14 19:59:02 +00:00
op.diffeta(x.view(), y.view_mut());
2020-02-29 09:53:20 +00:00
approx::assert_abs_diff_eq!(&y, &grid_eval(n, dfdy), epsilon = eps);
}
}