2021-01-18 21:37:24 +00:00
|
|
|
use super::*;
|
2021-02-01 22:08:55 +00:00
|
|
|
use ndarray::s;
|
2021-02-01 22:58:13 +00:00
|
|
|
use num_traits::Zero;
|
2021-01-18 21:37:24 +00:00
|
|
|
|
2021-02-01 17:59:59 +00:00
|
|
|
pub(crate) mod constmatrix;
|
2021-02-01 17:37:59 +00:00
|
|
|
pub(crate) use constmatrix::{flip_lr, flip_sign, flip_ud, ColVector, Matrix, RowVector};
|
2021-01-28 19:59:11 +00:00
|
|
|
|
2021-02-01 17:59:59 +00:00
|
|
|
#[cfg(feature = "fast-float")]
|
|
|
|
mod fastfloat;
|
|
|
|
#[cfg(feature = "fast-float")]
|
|
|
|
use fastfloat::FastFloat;
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
|
|
pub(crate) struct DiagonalMatrix<const B: usize> {
|
|
|
|
pub start: [Float; B],
|
|
|
|
pub diag: Float,
|
|
|
|
pub end: [Float; B],
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<const B: usize> DiagonalMatrix<B> {
|
|
|
|
pub const fn new(block: [Float; B]) -> Self {
|
|
|
|
let start = block;
|
|
|
|
let diag = 1.0;
|
|
|
|
let mut end = block;
|
|
|
|
let mut i = 0;
|
|
|
|
while i < B {
|
|
|
|
end[i] = block[B - 1 - i];
|
|
|
|
i += 1;
|
|
|
|
}
|
|
|
|
Self { start, diag, end }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
2021-02-01 22:13:10 +00:00
|
|
|
pub(crate) struct BlockMatrix<T, const M: usize, const N: usize, const D: usize> {
|
|
|
|
pub start: Matrix<T, M, N>,
|
|
|
|
pub diag: RowVector<T, D>,
|
|
|
|
pub end: Matrix<T, M, N>,
|
2021-02-01 22:08:55 +00:00
|
|
|
}
|
|
|
|
|
2021-02-01 22:13:10 +00:00
|
|
|
impl<T, const M: usize, const N: usize, const D: usize> BlockMatrix<T, M, N, D> {
|
|
|
|
pub const fn new(start: Matrix<T, M, N>, diag: RowVector<T, D>, end: Matrix<T, M, N>) -> Self {
|
2021-02-01 22:08:55 +00:00
|
|
|
Self { start, diag, end }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(PartialEq, Copy, Clone)]
|
|
|
|
pub(crate) enum OperatorType {
|
|
|
|
Normal,
|
|
|
|
H2,
|
|
|
|
// TODO: D2
|
|
|
|
}
|
|
|
|
|
2021-01-28 19:59:11 +00:00
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
/// Works on all 1d vectors
|
|
|
|
pub(crate) fn diff_op_1d_fallback<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-28 19:59:11 +00:00
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView1<Float>,
|
|
|
|
mut fut: ArrayViewMut1<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[0];
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
assert!(nx >= N);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
let (futstart, futmid, futend) =
|
|
|
|
fut.multi_slice_mut((s![..M], s![M..nx - 2 * M], s![nx - 2 * M..]));
|
|
|
|
|
|
|
|
for (bl, f) in matrix.start.iter_rows().zip(futstart) {
|
|
|
|
let diff = dotproduct(bl.iter(), prev.iter());
|
2021-01-28 19:59:11 +00:00
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The window needs to be aligned to the diagonal elements,
|
|
|
|
// based on the block size
|
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
|
|
|
|
for (window, f) in prev
|
|
|
|
.windows(D)
|
|
|
|
.into_iter()
|
|
|
|
.skip(window_elems_to_skip)
|
2021-02-01 22:08:55 +00:00
|
|
|
.zip(futmid)
|
2021-01-28 19:59:11 +00:00
|
|
|
{
|
2021-02-01 22:08:55 +00:00
|
|
|
let diff = dotproduct(matrix.diag.row(0), window);
|
2021-01-28 19:59:11 +00:00
|
|
|
*f = diff * idx;
|
|
|
|
}
|
|
|
|
|
2021-01-31 13:54:15 +00:00
|
|
|
let prev = prev.slice(ndarray::s![nx - N..]);
|
2021-02-01 22:08:55 +00:00
|
|
|
for (bl, f) in matrix.end.iter_rows().zip(futend) {
|
|
|
|
let diff = dotproduct(bl, prev);
|
2021-01-29 16:36:05 +00:00
|
|
|
*f = diff * idx;
|
2021-01-28 19:59:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
/// diff op in 1d for slices
|
|
|
|
pub(crate) fn diff_op_1d_slice<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-28 19:59:11 +00:00
|
|
|
optype: OperatorType,
|
|
|
|
prev: &[Float],
|
|
|
|
fut: &mut [Float],
|
|
|
|
) {
|
2021-01-28 23:14:56 +00:00
|
|
|
#[cfg(feature = "fast-float")]
|
2021-02-01 22:08:55 +00:00
|
|
|
let (matrix, prev, fut) = {
|
2021-01-28 23:14:56 +00:00
|
|
|
use std::mem::transmute;
|
|
|
|
unsafe {
|
|
|
|
(
|
2021-02-01 22:08:55 +00:00
|
|
|
transmute::<_, &BlockMatrix<FastFloat, M, N, D>>(matrix),
|
2021-01-28 23:14:56 +00:00
|
|
|
transmute::<_, &[FastFloat]>(prev),
|
|
|
|
transmute::<_, &mut [FastFloat]>(fut),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
};
|
2021-01-28 21:31:54 +00:00
|
|
|
|
2021-01-28 19:59:11 +00:00
|
|
|
assert_eq!(prev.len(), fut.len());
|
|
|
|
let nx = prev.len();
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
assert!(nx >= N);
|
|
|
|
let prev = &prev[..nx];
|
|
|
|
let fut = &mut fut[..nx];
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
2021-01-28 23:08:31 +00:00
|
|
|
let idx = 1.0 / dx;
|
2021-01-28 23:14:56 +00:00
|
|
|
#[cfg(feature = "fast-float")]
|
2021-01-28 23:08:31 +00:00
|
|
|
let idx = FastFloat::from(idx);
|
2021-01-28 19:59:11 +00:00
|
|
|
|
2021-01-29 16:59:35 +00:00
|
|
|
// Help aliasing analysis
|
|
|
|
let (futb1, fut) = fut.split_at_mut(M);
|
|
|
|
let (fut, futb2) = fut.split_at_mut(nx - 2 * M);
|
|
|
|
|
2021-01-28 19:59:11 +00:00
|
|
|
use std::convert::TryInto;
|
|
|
|
{
|
2021-01-29 16:47:13 +00:00
|
|
|
let prev = ColVector::<_, N>::map_to_col(prev.array_windows::<N>().next().unwrap());
|
2021-01-29 16:59:35 +00:00
|
|
|
let fut = ColVector::<_, M>::map_to_col_mut(futb1.try_into().unwrap());
|
2021-01-28 19:59:11 +00:00
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
fut.matmul_into(&matrix.start, prev);
|
2021-01-29 15:42:49 +00:00
|
|
|
*fut *= idx;
|
2021-01-28 19:59:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// The window needs to be aligned to the diagonal elements,
|
|
|
|
// based on the block size
|
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
|
|
|
|
for (window, f) in prev
|
|
|
|
.array_windows::<D>()
|
|
|
|
.skip(window_elems_to_skip)
|
2021-01-29 16:59:35 +00:00
|
|
|
.zip(fut.array_chunks_mut::<1>())
|
2021-01-28 19:59:11 +00:00
|
|
|
{
|
2021-01-28 21:31:54 +00:00
|
|
|
let fut = ColVector::<_, 1>::map_to_col_mut(f);
|
2021-01-28 19:59:11 +00:00
|
|
|
let prev = ColVector::<_, D>::map_to_col(window);
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
fut.matmul_into(&matrix.diag, prev);
|
2021-01-29 15:42:49 +00:00
|
|
|
*fut *= idx;
|
2021-01-28 19:59:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
{
|
2021-01-28 23:08:31 +00:00
|
|
|
let prev = prev.array_windows::<N>().next_back().unwrap();
|
2021-01-28 20:27:25 +00:00
|
|
|
let prev = ColVector::<_, N>::map_to_col(prev);
|
2021-01-29 16:59:35 +00:00
|
|
|
let fut = ColVector::<_, M>::map_to_col_mut(futb2.try_into().unwrap());
|
2021-01-28 19:59:11 +00:00
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
fut.matmul_into(&matrix.end, prev);
|
2021-01-29 15:42:49 +00:00
|
|
|
*fut *= idx;
|
2021-01-28 19:59:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-18 21:37:24 +00:00
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
/// Will always work on 1d, delegated based on slicedness
|
|
|
|
pub(crate) fn diff_op_1d<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-18 21:37:24 +00:00
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView1<Float>,
|
|
|
|
mut fut: ArrayViewMut1<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[0];
|
2021-02-01 22:08:55 +00:00
|
|
|
assert!(nx >= 2 * M);
|
2021-01-18 21:37:24 +00:00
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
if let Some((prev, fut)) = prev.as_slice().zip(fut.as_slice_mut()) {
|
|
|
|
diff_op_1d_slice(matrix, optype, prev, fut)
|
2021-01-18 21:37:24 +00:00
|
|
|
} else {
|
2021-02-01 22:08:55 +00:00
|
|
|
diff_op_1d_fallback(matrix, optype, prev, fut)
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
2021-01-31 14:40:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
/// 2D diff fallback for when matrices are not slicable
|
|
|
|
pub(crate) fn diff_op_2d_fallback<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-31 14:40:28 +00:00
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView2<Float>,
|
2021-02-01 23:11:41 +00:00
|
|
|
mut fut: ArrayViewMut2<Float>,
|
2021-01-31 14:40:28 +00:00
|
|
|
) {
|
2021-02-01 23:11:41 +00:00
|
|
|
/* Does not increase the perf...
|
2021-02-01 22:58:13 +00:00
|
|
|
#[cfg(feature = "fast-float")]
|
|
|
|
let (matrix, prev, mut fut) = unsafe {
|
|
|
|
(
|
|
|
|
std::mem::transmute::<_, &BlockMatrix<FastFloat, M, N, D>>(matrix),
|
|
|
|
std::mem::transmute::<_, ArrayView2<FastFloat>>(prev),
|
|
|
|
std::mem::transmute::<_, ArrayViewMut2<FastFloat>>(fut),
|
|
|
|
)
|
|
|
|
};
|
|
|
|
#[cfg(not(feature = "fast-float"))]
|
|
|
|
let mut fut = fut;
|
2021-02-01 23:11:41 +00:00
|
|
|
*/
|
2021-02-01 22:58:13 +00:00
|
|
|
|
2021-01-31 14:40:28 +00:00
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
let ny = prev.shape()[0];
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
2021-02-01 22:58:13 +00:00
|
|
|
fut.fill(0.0.into());
|
2021-01-31 14:40:28 +00:00
|
|
|
let (mut fut0, mut futmid, mut futn) = fut.multi_slice_mut((
|
|
|
|
ndarray::s![.., ..M],
|
|
|
|
ndarray::s![.., M..nx - M],
|
|
|
|
ndarray::s![.., nx - M..],
|
|
|
|
));
|
|
|
|
|
|
|
|
// First block
|
2021-02-01 22:08:55 +00:00
|
|
|
for (bl, mut fut) in matrix
|
|
|
|
.start
|
|
|
|
.iter_rows()
|
|
|
|
.zip(fut0.axis_iter_mut(ndarray::Axis(1)))
|
|
|
|
{
|
2021-01-31 14:40:28 +00:00
|
|
|
debug_assert_eq!(fut.len(), prev.shape()[0]);
|
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
2021-02-01 22:58:13 +00:00
|
|
|
if bl.is_zero() {
|
2021-01-31 14:40:28 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
debug_assert_eq!(prev.len(), fut.len());
|
|
|
|
fut.scaled_add(idx * bl, &prev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
|
|
|
|
// Diagonal entries
|
|
|
|
for (mut fut, id) in futmid
|
|
|
|
.axis_iter_mut(ndarray::Axis(1))
|
|
|
|
.zip(prev.windows((ny, D)).into_iter().skip(window_elems_to_skip))
|
|
|
|
{
|
2021-02-01 22:08:55 +00:00
|
|
|
for (&d, id) in matrix.diag.iter().zip(id.axis_iter(ndarray::Axis(1))) {
|
2021-02-01 22:58:13 +00:00
|
|
|
if d.is_zero() {
|
2021-01-31 14:40:28 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
fut.scaled_add(idx * d, &id)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// End block
|
|
|
|
let prev = prev.slice(ndarray::s!(.., nx - N..));
|
2021-02-01 22:08:55 +00:00
|
|
|
for (bl, mut fut) in matrix
|
|
|
|
.end
|
2021-01-31 14:40:28 +00:00
|
|
|
.iter_rows()
|
|
|
|
.zip(futn.axis_iter_mut(ndarray::Axis(1)))
|
|
|
|
{
|
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
2021-02-01 22:58:13 +00:00
|
|
|
if bl.is_zero() {
|
2021-01-31 14:40:28 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
fut.scaled_add(idx * bl, &prev);
|
|
|
|
}
|
|
|
|
}
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
|
|
|
|
2021-02-01 23:33:37 +00:00
|
|
|
#[inline(always)]
|
|
|
|
/// 2D diff when first axis is contiguous
|
2021-02-09 20:44:35 +00:00
|
|
|
#[allow(unused)]
|
2021-02-01 23:33:37 +00:00
|
|
|
pub(crate) fn diff_op_2d_sliceable_y<const M: usize, const N: usize, const D: usize>(
|
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView2<Float>,
|
|
|
|
mut fut: ArrayViewMut2<Float>,
|
|
|
|
) {
|
|
|
|
/* Does not increase the perf...
|
|
|
|
#[cfg(feature = "fast-float")]
|
|
|
|
let (matrix, prev, mut fut) = unsafe {
|
|
|
|
(
|
|
|
|
std::mem::transmute::<_, &BlockMatrix<FastFloat, M, N, D>>(matrix),
|
|
|
|
std::mem::transmute::<_, ArrayView2<FastFloat>>(prev),
|
|
|
|
std::mem::transmute::<_, ArrayViewMut2<FastFloat>>(fut),
|
|
|
|
)
|
|
|
|
};
|
|
|
|
#[cfg(not(feature = "fast-float"))]
|
|
|
|
let mut fut = fut;
|
|
|
|
*/
|
|
|
|
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
let ny = prev.shape()[0];
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
assert_eq!(prev.strides()[0], 1);
|
|
|
|
assert_eq!(fut.strides()[0], 1);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
fut.fill(0.0.into());
|
|
|
|
let (mut fut0, mut futmid, mut futn) = fut.multi_slice_mut((
|
|
|
|
ndarray::s![.., ..M],
|
|
|
|
ndarray::s![.., M..nx - M],
|
|
|
|
ndarray::s![.., nx - M..],
|
|
|
|
));
|
|
|
|
|
|
|
|
// First block
|
|
|
|
for (bl, mut fut) in matrix
|
|
|
|
.start
|
|
|
|
.iter_rows()
|
|
|
|
.zip(fut0.axis_iter_mut(ndarray::Axis(1)))
|
|
|
|
{
|
|
|
|
let fut = &mut fut.as_slice_mut().unwrap()[..ny];
|
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
|
|
|
if bl.is_zero() {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
let prev = &prev.as_slice().unwrap()[..ny];
|
|
|
|
for (fut, prev) in fut.iter_mut().zip(prev) {
|
|
|
|
*fut = *fut + idx * prev * bl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
|
|
|
|
// Diagonal entries
|
|
|
|
for (mut fut, id) in futmid
|
|
|
|
.axis_iter_mut(ndarray::Axis(1))
|
|
|
|
.zip(prev.windows((ny, D)).into_iter().skip(window_elems_to_skip))
|
|
|
|
{
|
|
|
|
let fut = &mut fut.as_slice_mut().unwrap()[..ny];
|
|
|
|
for (&d, id) in matrix.diag.iter().zip(id.axis_iter(ndarray::Axis(1))) {
|
|
|
|
if d.is_zero() {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
let id = id.as_slice().unwrap();
|
|
|
|
for (fut, id) in fut.iter_mut().zip(id) {
|
|
|
|
*fut = *fut + idx * id * d;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// End block
|
|
|
|
let prev = prev.slice(ndarray::s!(.., nx - N..));
|
|
|
|
for (bl, mut fut) in matrix
|
|
|
|
.end
|
|
|
|
.iter_rows()
|
|
|
|
.zip(futn.axis_iter_mut(ndarray::Axis(1)))
|
|
|
|
{
|
|
|
|
let fut = &mut fut.as_slice_mut().unwrap()[..ny];
|
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(ndarray::Axis(1))) {
|
|
|
|
if bl.is_zero() {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
let prev = &prev.as_slice().unwrap()[..ny];
|
|
|
|
for (fut, prev) in fut.iter_mut().zip(prev) {
|
|
|
|
*fut = *fut + idx * prev * bl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-09 20:44:35 +00:00
|
|
|
#[inline(always)]
|
|
|
|
pub(crate) fn diff_op_2d_sliceable_y_simd<const M: usize, const N: usize, const D: usize>(
|
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView2<Float>,
|
|
|
|
mut fut: ArrayViewMut2<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
|
|
|
|
assert_eq!(prev.strides()[0], 1);
|
|
|
|
assert_eq!(fut.strides()[0], 1);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
#[cfg(not(feature = "f32"))]
|
|
|
|
type SimdT = packed_simd::f64x8;
|
|
|
|
#[cfg(feature = "f32")]
|
|
|
|
type SimdT = packed_simd::f32x16;
|
|
|
|
|
|
|
|
let ny = prev.shape()[0];
|
|
|
|
// How many elements that can be simdified
|
|
|
|
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
|
|
|
|
|
|
|
|
let half_diag_width = (D - 1) / 2;
|
|
|
|
assert!(half_diag_width <= M);
|
|
|
|
|
|
|
|
let fut_base_ptr = fut.as_mut_ptr();
|
|
|
|
let fut_stride = fut.strides()[1];
|
|
|
|
let fut_ptr = |j, i| {
|
|
|
|
debug_assert!(j < ny && i < nx);
|
|
|
|
unsafe { fut_base_ptr.offset(fut_stride * i as isize + j as isize) }
|
|
|
|
};
|
|
|
|
|
|
|
|
let prev_base_ptr = prev.as_ptr();
|
|
|
|
let prev_stride = prev.strides()[1];
|
|
|
|
let prev_ptr = |j, i| {
|
|
|
|
debug_assert!(j < ny && i < nx);
|
|
|
|
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
|
|
|
|
};
|
|
|
|
|
|
|
|
// Not algo necessary, but gives performance increase
|
|
|
|
assert_eq!(fut_stride, prev_stride);
|
|
|
|
|
|
|
|
// First block
|
|
|
|
{
|
|
|
|
for (ifut, &bl) in matrix.start.iter_rows().enumerate() {
|
|
|
|
for j in (0..simdified).step_by(SimdT::lanes()) {
|
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (iprev, &bl) in bl.iter().enumerate() {
|
|
|
|
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
|
|
|
}
|
|
|
|
f *= idx;
|
|
|
|
|
|
|
|
unsafe {
|
|
|
|
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
|
|
|
fut_ptr(j, ifut),
|
|
|
|
SimdT::lanes(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for j in simdified..ny {
|
|
|
|
unsafe {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (iprev, bl) in bl.iter().enumerate() {
|
|
|
|
f += bl * *prev_ptr(j, iprev);
|
|
|
|
}
|
|
|
|
*fut_ptr(j, ifut) = f * idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Diagonal elements
|
|
|
|
{
|
|
|
|
for ifut in M..nx - M {
|
|
|
|
for j in (0..simdified).step_by(SimdT::lanes()) {
|
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (id, &d) in matrix.diag.iter().enumerate() {
|
|
|
|
let offset = ifut - half_diag_width + id;
|
|
|
|
f = index_to_simd(offset).mul_adde(SimdT::splat(d), f);
|
|
|
|
}
|
|
|
|
f *= idx;
|
|
|
|
unsafe {
|
|
|
|
// puts simd along stride 1, j never goes past end of slice
|
|
|
|
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
|
|
|
fut_ptr(j, ifut),
|
|
|
|
SimdT::lanes(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for j in simdified..ny {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (id, &d) in matrix.diag.iter().enumerate() {
|
|
|
|
let offset = ifut - half_diag_width + id;
|
|
|
|
unsafe {
|
|
|
|
f += d * *prev_ptr(j, offset);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
unsafe {
|
|
|
|
*fut_ptr(j, ifut) = idx * f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// End block
|
|
|
|
{
|
|
|
|
// Get blocks and corresponding offsets
|
|
|
|
// (rev to iterate in ifut increasing order)
|
|
|
|
for (bl, ifut) in matrix.end.iter_rows().zip(nx - M..) {
|
|
|
|
for j in (0..simdified).step_by(SimdT::lanes()) {
|
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (&bl, iprev) in bl.iter().zip(nx - N..) {
|
|
|
|
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
|
|
|
}
|
|
|
|
f = f * idx;
|
|
|
|
unsafe {
|
|
|
|
f.write_to_slice_unaligned(std::slice::from_raw_parts_mut(
|
|
|
|
fut_ptr(j, ifut),
|
|
|
|
SimdT::lanes(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for j in simdified..ny {
|
|
|
|
unsafe {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (&bl, iprev) in bl.iter().zip(nx - N..) {
|
|
|
|
f += bl * *prev_ptr(j, iprev);
|
|
|
|
}
|
|
|
|
*fut_ptr(j, ifut) = f * idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-01 22:21:06 +00:00
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
pub(crate) fn diff_op_2d_sliceable<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-18 21:37:24 +00:00
|
|
|
optype: OperatorType,
|
2021-02-01 22:08:55 +00:00
|
|
|
prev: ArrayView2<Float>,
|
|
|
|
mut fut: ArrayViewMut2<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
for (prev, mut fut) in prev.outer_iter().zip(fut.outer_iter_mut()) {
|
|
|
|
let prev = &prev.as_slice().unwrap()[..nx];
|
|
|
|
let fut = &mut fut.as_slice_mut().unwrap()[..nx];
|
|
|
|
diff_op_1d_slice(matrix, optype, prev, fut)
|
|
|
|
}
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
/// Dispatch based on strides
|
|
|
|
pub(crate) fn diff_op_2d<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-18 21:37:24 +00:00
|
|
|
optype: OperatorType,
|
2021-02-01 22:08:55 +00:00
|
|
|
prev: ArrayView2<Float>,
|
|
|
|
fut: ArrayViewMut2<Float>,
|
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
match (prev.strides(), fut.strides()) {
|
|
|
|
([_, 1], [_, 1]) => diff_op_2d_sliceable(matrix, optype, prev, fut),
|
2021-02-09 20:44:35 +00:00
|
|
|
([1, _], [1, _]) => diff_op_2d_sliceable_y_simd(matrix, optype, prev, fut),
|
2021-02-01 22:08:55 +00:00
|
|
|
_ => diff_op_2d_fallback(matrix, optype, prev, fut),
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
/*
|
2021-01-18 21:37:24 +00:00
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
/// Way to too much overhead with SIMD:
|
|
|
|
/// output SIMD oriented:
|
|
|
|
/// |S | = |P0 P1| |P0 P1|
|
|
|
|
/// |S | = a1|P0 P1| + b1|P0 P1|
|
|
|
|
/// |S | = |P0 P1| |P0 P1|
|
|
|
|
///
|
|
|
|
/// | S | = |P0 P1| |P0 P1|
|
|
|
|
/// | S | = a2|P0 P1| + b1|P0 P1|
|
|
|
|
/// | S | = |P0 P1| |P0 P1|
|
2021-01-29 16:36:05 +00:00
|
|
|
pub(crate) fn diff_op_col_matrix<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:08:55 +00:00
|
|
|
matrix: &BlockMatrix<M, N, D>,
|
2021-01-29 16:36:05 +00:00
|
|
|
optype: OperatorType,
|
|
|
|
prev: ArrayView2<Float>,
|
2021-01-30 14:58:03 +00:00
|
|
|
fut: ArrayViewMut2<Float>,
|
2021-01-29 16:36:05 +00:00
|
|
|
) {
|
|
|
|
assert_eq!(prev.shape(), fut.shape());
|
|
|
|
let nx = prev.shape()[1];
|
|
|
|
assert!(nx >= 2 * M);
|
|
|
|
|
|
|
|
assert_eq!(prev.strides()[0], 1);
|
|
|
|
assert_eq!(fut.strides()[0], 1);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (nx - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (nx - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
|
|
|
#[cfg(not(feature = "f32"))]
|
|
|
|
type SimdT = packed_simd::f64x8;
|
|
|
|
#[cfg(feature = "f32")]
|
|
|
|
type SimdT = packed_simd::f32x16;
|
|
|
|
|
|
|
|
let ny = prev.shape()[0];
|
|
|
|
// How many elements that can be simdified
|
|
|
|
let simdified = SimdT::lanes() * (ny / SimdT::lanes());
|
|
|
|
|
|
|
|
let half_diag_width = (D - 1) / 2;
|
|
|
|
assert!(half_diag_width <= M);
|
|
|
|
|
|
|
|
let fut_stride = fut.strides()[1];
|
|
|
|
|
|
|
|
let prev_base_ptr = prev.as_ptr();
|
|
|
|
let prev_stride = prev.strides()[1];
|
|
|
|
let prev_ptr = |j, i| {
|
|
|
|
debug_assert!(j < ny && i < nx);
|
|
|
|
unsafe { prev_base_ptr.offset(prev_stride * i as isize + j as isize) }
|
|
|
|
};
|
|
|
|
|
|
|
|
// Not algo necessary, but gives performance increase
|
|
|
|
assert_eq!(fut_stride, prev_stride);
|
|
|
|
|
2021-01-30 14:58:03 +00:00
|
|
|
use ndarray::Axis;
|
|
|
|
let (mut fut1, fut) = fut.split_at(Axis(1), M);
|
|
|
|
let (mut fut, mut fut2) = fut.split_at(Axis(1), nx - 2 * M);
|
|
|
|
|
2021-01-29 16:36:05 +00:00
|
|
|
// First block
|
|
|
|
{
|
2021-01-30 14:58:03 +00:00
|
|
|
let prev = prev.slice(ndarray::s![.., ..N]);
|
|
|
|
let (prevb, prevl) = prev.split_at(Axis(0), simdified);
|
2021-02-01 22:08:55 +00:00
|
|
|
for (mut fut, &bl) in fut1.axis_iter_mut(Axis(1)).zip(matrix.start.iter_rows()) {
|
2021-01-30 14:58:03 +00:00
|
|
|
let fut = fut.as_slice_mut().unwrap();
|
|
|
|
let fut = &mut fut[..ny];
|
|
|
|
|
|
|
|
let mut fut = fut.chunks_exact_mut(SimdT::lanes());
|
|
|
|
let mut prev = prevb.axis_chunks_iter(Axis(0), SimdT::lanes());
|
|
|
|
|
|
|
|
for (fut, prev) in fut.by_ref().zip(prev.by_ref()) {
|
2021-01-29 16:36:05 +00:00
|
|
|
let mut f = SimdT::splat(0.0);
|
2021-01-30 14:58:03 +00:00
|
|
|
for (&bl, prev) in bl.iter().zip(prev.axis_iter(Axis(1))) {
|
|
|
|
let prev = prev.to_slice().unwrap();
|
|
|
|
let prev = SimdT::from_slice_unaligned(prev);
|
|
|
|
f = prev.mul_adde(SimdT::splat(bl), f);
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
|
|
|
f *= idx;
|
2021-01-30 14:58:03 +00:00
|
|
|
f.write_to_slice_unaligned(fut);
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
2021-01-30 14:58:03 +00:00
|
|
|
for (fut, prev) in fut
|
|
|
|
.into_remainder()
|
|
|
|
.iter_mut()
|
|
|
|
.zip(prevl.axis_iter(Axis(0)))
|
|
|
|
{
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (bl, prev) in bl.iter().zip(prev.iter()) {
|
|
|
|
f += bl * prev;
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
2021-01-30 14:58:03 +00:00
|
|
|
*fut = f * idx;
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Diagonal elements
|
|
|
|
{
|
2021-01-30 14:58:03 +00:00
|
|
|
let window_elems_to_skip = M - ((D - 1) / 2);
|
|
|
|
let prev = prev.slice(ndarray::s![.., window_elems_to_skip..]);
|
|
|
|
let prev = prev.windows((ny, D));
|
|
|
|
for (mut fut, prev) in fut.axis_iter_mut(Axis(1)).zip(prev) {
|
|
|
|
let fut = fut.as_slice_mut().unwrap();
|
|
|
|
let fut = &mut fut[..ny];
|
|
|
|
|
|
|
|
let mut fut = fut.chunks_exact_mut(SimdT::lanes());
|
|
|
|
|
|
|
|
let (prevb, prevl) = prev.split_at(Axis(0), simdified);
|
|
|
|
let prev = prevb.axis_chunks_iter(Axis(0), SimdT::lanes());
|
|
|
|
|
|
|
|
for (fut, prev) in fut.by_ref().zip(prev) {
|
2021-01-29 16:36:05 +00:00
|
|
|
let mut f = SimdT::splat(0.0);
|
2021-02-01 22:08:55 +00:00
|
|
|
for (&d, prev) in matrix.diag.iter().zip(prev.axis_iter(Axis(1))) {
|
2021-01-30 14:58:03 +00:00
|
|
|
let prev = prev.to_slice().unwrap();
|
|
|
|
let prev = SimdT::from_slice_unaligned(prev);
|
|
|
|
f = prev.mul_adde(SimdT::splat(d), f);
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
|
|
|
f *= idx;
|
2021-01-30 14:58:03 +00:00
|
|
|
f.write_to_slice_unaligned(fut);
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
2021-01-30 14:58:03 +00:00
|
|
|
|
|
|
|
for (fut, prev) in fut
|
|
|
|
.into_remainder()
|
|
|
|
.into_iter()
|
|
|
|
.zip(prevl.axis_iter(Axis(0)))
|
|
|
|
{
|
2021-01-29 16:36:05 +00:00
|
|
|
let mut f = 0.0;
|
2021-02-01 22:08:55 +00:00
|
|
|
for (&d, prev) in matrix.diag.iter().zip(prev) {
|
2021-01-30 14:58:03 +00:00
|
|
|
f += d * prev;
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
2021-01-30 14:58:03 +00:00
|
|
|
*fut = idx * f;
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// End block
|
|
|
|
{
|
2021-02-01 22:08:55 +00:00
|
|
|
for (mut fut, &bl) in fut2.axis_iter_mut(Axis(1)).zip(matrix.end.iter_rows()) {
|
2021-01-30 14:58:03 +00:00
|
|
|
let fut = fut.as_slice_mut().unwrap();
|
|
|
|
let fut = &mut fut[..ny];
|
|
|
|
let mut fut = fut.chunks_exact_mut(SimdT::lanes());
|
|
|
|
|
|
|
|
for (fut, j) in fut.by_ref().zip((0..simdified).step_by(SimdT::lanes())) {
|
2021-01-29 16:36:05 +00:00
|
|
|
let index_to_simd = |i| unsafe {
|
|
|
|
// j never moves past end of slice due to step_by and
|
|
|
|
// rounding down
|
|
|
|
SimdT::from_slice_unaligned(std::slice::from_raw_parts(
|
|
|
|
prev_ptr(j, i),
|
|
|
|
SimdT::lanes(),
|
|
|
|
))
|
|
|
|
};
|
|
|
|
let mut f = SimdT::splat(0.0);
|
|
|
|
for (iprev, &bl) in (nx - N..nx).zip(bl.iter()) {
|
|
|
|
f = index_to_simd(iprev).mul_adde(SimdT::splat(bl), f);
|
|
|
|
}
|
|
|
|
f *= idx;
|
2021-01-30 14:58:03 +00:00
|
|
|
f.write_to_slice_unaligned(fut);
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
2021-01-30 14:58:03 +00:00
|
|
|
for (fut, j) in fut.into_remainder().into_iter().zip(simdified..ny) {
|
2021-01-29 16:36:05 +00:00
|
|
|
unsafe {
|
|
|
|
let mut f = 0.0;
|
|
|
|
for (iprev, bl) in (nx - N..nx).zip(bl.iter()) {
|
|
|
|
f += bl * *prev_ptr(j, iprev);
|
|
|
|
}
|
2021-01-30 14:58:03 +00:00
|
|
|
*fut = f * idx;
|
2021-01-29 16:36:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-02-01 22:08:55 +00:00
|
|
|
*/
|
2021-01-29 16:36:05 +00:00
|
|
|
|
2021-01-18 21:37:24 +00:00
|
|
|
#[inline(always)]
|
2021-02-01 22:08:55 +00:00
|
|
|
fn dotproduct<'a>(
|
|
|
|
u: impl IntoIterator<Item = &'a Float>,
|
|
|
|
v: impl IntoIterator<Item = &'a Float>,
|
|
|
|
) -> Float {
|
|
|
|
u.into_iter().zip(v.into_iter()).fold(0.0, |acc, (&u, &v)| {
|
|
|
|
#[cfg(feature = "fast-float")]
|
2021-01-18 21:37:24 +00:00
|
|
|
{
|
2021-02-01 22:08:55 +00:00
|
|
|
// We do not care about the order of multiplication nor addition
|
|
|
|
(FastFloat::from(acc) + FastFloat::from(u) * FastFloat::from(v)).into()
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
2021-02-01 22:08:55 +00:00
|
|
|
#[cfg(not(feature = "fast-float"))]
|
|
|
|
{
|
|
|
|
acc + u * v
|
|
|
|
}
|
|
|
|
})
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "sparse")]
|
2021-02-01 22:08:55 +00:00
|
|
|
pub(crate) fn sparse_from_block<const M: usize, const N: usize, const D: usize>(
|
2021-02-01 22:13:10 +00:00
|
|
|
matrix: &BlockMatrix<Float, M, N, D>,
|
2021-01-18 21:37:24 +00:00
|
|
|
optype: OperatorType,
|
|
|
|
n: usize,
|
|
|
|
) -> sprs::CsMat<Float> {
|
2021-02-01 22:08:55 +00:00
|
|
|
assert!(n >= 2 * M);
|
2021-01-18 21:37:24 +00:00
|
|
|
|
|
|
|
let nnz = {
|
2021-02-01 22:08:55 +00:00
|
|
|
let blockstart_elems = matrix
|
|
|
|
.start
|
|
|
|
.iter()
|
|
|
|
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
|
|
|
|
|
|
|
|
let diag_elems = matrix
|
|
|
|
.diag
|
|
|
|
.iter()
|
|
|
|
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
|
2021-01-18 21:37:24 +00:00
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
let blockend_elems = matrix
|
|
|
|
.end
|
2021-01-18 21:37:24 +00:00
|
|
|
.iter()
|
|
|
|
.fold(0, |acc, &x| if x != 0.0 { acc + 1 } else { acc });
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
blockstart_elems + (n - 2 * M) * diag_elems + blockend_elems
|
2021-01-18 21:37:24 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
let mut mat = sprs::TriMat::with_capacity((n, n), nnz);
|
|
|
|
|
|
|
|
let dx = if optype == OperatorType::H2 {
|
|
|
|
1.0 / (n - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (n - 1) as Float
|
|
|
|
};
|
|
|
|
let idx = 1.0 / dx;
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
for (j, bl) in matrix.start.iter_rows().enumerate() {
|
2021-01-18 21:37:24 +00:00
|
|
|
for (i, &b) in bl.iter().enumerate() {
|
|
|
|
if b == 0.0 {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
mat.add_triplet(j, i, b * idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
for j in M..n - M {
|
|
|
|
let half_diag_len = D / 2;
|
|
|
|
for (&d, i) in matrix.diag.iter().zip(j - half_diag_len..) {
|
2021-01-18 21:37:24 +00:00
|
|
|
if d == 0.0 {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
mat.add_triplet(j, i, d * idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-01 22:08:55 +00:00
|
|
|
for (bl, j) in matrix.end.iter_rows().zip(n - M..) {
|
|
|
|
for (&b, i) in bl.iter().zip(n - N..) {
|
2021-01-18 21:37:24 +00:00
|
|
|
if b == 0.0 {
|
|
|
|
continue;
|
|
|
|
}
|
2021-02-01 22:08:55 +00:00
|
|
|
mat.add_triplet(j, i, b * idx);
|
2021-01-18 21:37:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mat.to_csr()
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(feature = "sparse")]
|
2021-02-01 22:08:55 +00:00
|
|
|
pub(crate) fn h_matrix<const D: usize>(
|
|
|
|
hmatrix: &DiagonalMatrix<D>,
|
|
|
|
n: usize,
|
|
|
|
is_h2: bool,
|
|
|
|
) -> sprs::CsMat<Float> {
|
2021-01-18 21:37:24 +00:00
|
|
|
let h = if is_h2 {
|
|
|
|
1.0 / (n - 2) as Float
|
|
|
|
} else {
|
|
|
|
1.0 / (n - 1) as Float
|
|
|
|
};
|
2021-02-01 22:08:55 +00:00
|
|
|
let nmiddle = n - 2 * D;
|
|
|
|
let iter = hmatrix
|
|
|
|
.start
|
2021-01-18 21:37:24 +00:00
|
|
|
.iter()
|
2021-02-01 22:08:55 +00:00
|
|
|
.chain(std::iter::repeat(&hmatrix.diag).take(nmiddle))
|
|
|
|
.chain(hmatrix.end.iter())
|
2021-01-18 21:37:24 +00:00
|
|
|
.map(|&x| h * x);
|
|
|
|
|
|
|
|
let mut mat = sprs::TriMat::with_capacity((n, n), n);
|
|
|
|
for (i, d) in iter.enumerate() {
|
|
|
|
mat.add_triplet(i, i, d);
|
|
|
|
}
|
|
|
|
mat.to_csr()
|
|
|
|
}
|