SummationByParts/sbp/src/euler.rs

696 lines
19 KiB
Rust
Raw Normal View History

2020-01-30 17:28:22 +00:00
use super::grid::Grid;
2020-01-29 20:16:09 +00:00
use super::integrate;
2020-01-25 19:40:55 +00:00
use super::operators::{SbpOperator, UpwindOperator};
2020-01-29 19:50:56 +00:00
use ndarray::azip;
2020-01-25 19:40:55 +00:00
use ndarray::prelude::*;
pub const GAMMA: f32 = 1.4;
2020-01-28 18:31:14 +00:00
// A collection of buffers that allows one to efficiently
// move to the next state
2020-02-19 19:02:22 +00:00
#[derive(Debug)]
2020-01-28 18:31:14 +00:00
pub struct System<SBP: SbpOperator> {
sys: (Field, Field),
wb: WorkBuffers,
grid: Grid<SBP>,
}
impl<SBP: SbpOperator> System<SBP> {
pub fn new(x: ndarray::Array2<f32>, y: ndarray::Array2<f32>) -> Self {
let grid = Grid::new(x, y).expect(
"Could not create grid. Different number of elements compared to width*height?",
);
let nx = grid.nx();
let ny = grid.ny();
Self {
sys: (Field::new(ny, nx), Field::new(ny, nx)),
grid,
wb: WorkBuffers::new(ny, nx),
}
}
pub fn advance(&mut self, dt: f32) {
2020-02-19 20:51:01 +00:00
let rhs_trad = |k: &mut Field, y: &Field, grid: &_, wb: &mut _| {
let boundaries = BoundaryTerms {
north: y.south(),
south: y.north(),
west: y.east(),
east: y.west(),
};
RHS_trad(k, y, grid, &boundaries, wb)
};
2020-01-29 20:16:09 +00:00
integrate::rk4(
2020-02-19 20:51:01 +00:00
rhs_trad,
2020-01-28 18:31:14 +00:00
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
&mut self.wb.k,
&mut self.wb.tmp,
2020-01-28 18:31:14 +00:00
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
2020-01-29 18:36:16 +00:00
#[allow(clippy::many_single_char_names)]
2020-01-28 18:31:14 +00:00
pub fn init_with_vortex(&mut self, x0: f32, y0: f32) {
// Should parametrise such that we have radius, drop in pressure at center, etc
let vortex_parameters = VortexParameters {
x0,
y0,
rstar: 1.0,
eps: 3.0,
mach: 0.5,
};
2020-01-28 18:31:14 +00:00
self.sys.0.vortex(
self.grid.x.view(),
self.grid.y.view(),
0.0,
vortex_parameters,
)
2020-01-28 18:31:14 +00:00
}
pub fn field(&self) -> &Field {
&self.sys.0
}
}
impl<UO: UpwindOperator> System<UO> {
pub fn advance_upwind(&mut self, dt: f32) {
2020-02-19 20:51:01 +00:00
let rhs_upwind = |k: &mut Field, y: &Field, grid: &_, wb: &mut _| {
let boundaries = BoundaryTerms {
north: y.south(),
south: y.north(),
west: y.east(),
east: y.west(),
};
RHS_upwind(k, y, grid, &boundaries, wb)
};
2020-01-29 20:16:09 +00:00
integrate::rk4(
2020-02-19 20:51:01 +00:00
rhs_upwind,
2020-01-28 18:31:14 +00:00
&self.sys.0,
&mut self.sys.1,
dt,
&self.grid,
&mut self.wb.k,
&mut self.wb.tmp,
2020-01-28 18:31:14 +00:00
);
std::mem::swap(&mut self.sys.0, &mut self.sys.1);
}
}
2020-01-25 19:40:55 +00:00
#[derive(Clone, Debug)]
/// A 4 x ny x nx array
pub struct Field(pub(crate) Array3<f32>);
impl std::ops::Deref for Field {
type Target = Array3<f32>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for Field {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl Field {
pub fn new(ny: usize, nx: usize) -> Self {
let field = Array3::zeros((4, ny, nx));
Self(field)
}
pub fn nx(&self) -> usize {
self.0.shape()[2]
}
pub fn ny(&self) -> usize {
self.0.shape()[1]
}
pub fn rho(&self) -> ArrayView2<f32> {
self.slice(s![0, .., ..])
}
pub fn rhou(&self) -> ArrayView2<f32> {
self.slice(s![1, .., ..])
}
pub fn rhov(&self) -> ArrayView2<f32> {
self.slice(s![2, .., ..])
}
pub fn e(&self) -> ArrayView2<f32> {
self.slice(s![3, .., ..])
}
pub fn rho_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![0, .., ..])
}
pub fn rhou_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![1, .., ..])
}
pub fn rhov_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![2, .., ..])
}
pub fn e_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![3, .., ..])
}
#[allow(unused)]
pub fn components(
&self,
) -> (
ArrayView2<f32>,
ArrayView2<f32>,
ArrayView2<f32>,
ArrayView2<f32>,
) {
(self.rho(), self.rhou(), self.rhov(), self.e())
}
#[allow(unused)]
pub fn components_mut(
&mut self,
) -> (
ArrayViewMut2<f32>,
ArrayViewMut2<f32>,
ArrayViewMut2<f32>,
ArrayViewMut2<f32>,
) {
let mut iter = self.0.outer_iter_mut();
let rho = iter.next().unwrap();
let rhou = iter.next().unwrap();
let rhov = iter.next().unwrap();
let e = iter.next().unwrap();
assert_eq!(iter.next(), None);
(rho, rhou, rhov, e)
}
fn north(&self) -> ArrayView2<f32> {
self.slice(s![.., self.ny() - 1, ..])
}
fn south(&self) -> ArrayView2<f32> {
self.slice(s![.., 0, ..])
}
fn east(&self) -> ArrayView2<f32> {
self.slice(s![.., .., self.nx() - 1])
}
fn west(&self) -> ArrayView2<f32> {
self.slice(s![.., .., 0])
}
fn north_mut(&mut self) -> ArrayViewMut2<f32> {
let ny = self.ny();
self.slice_mut(s![.., ny - 1, ..])
}
fn south_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![.., 0, ..])
}
fn east_mut(&mut self) -> ArrayViewMut2<f32> {
let nx = self.nx();
self.slice_mut(s![.., .., nx - 1])
}
fn west_mut(&mut self) -> ArrayViewMut2<f32> {
self.slice_mut(s![.., .., 0])
}
fn vortex(
&mut self,
x: ArrayView2<f32>,
y: ArrayView2<f32>,
t: f32,
vortex_param: VortexParameters,
) {
assert_eq!(x.shape(), y.shape());
assert_eq!(x.shape()[1], self.nx());
assert_eq!(x.shape()[0], self.ny());
let (rho, rhou, rhov, e) = self.components_mut();
let eps = vortex_param.eps;
let m = vortex_param.mach;
let rstar = vortex_param.rstar;
let p_inf = 1.0 / (GAMMA * m * m);
azip!((rho in rho,
rhou in rhou,
rhov in rhov,
e in e,
x in x,
y in y)
{
use std::f32::consts::PI;
let dx = (x - vortex_param.x0) - t;
let dy = y - vortex_param.y0;
let f = (1.0 - (dx*dx + dy*dy))/(rstar*rstar);
*rho = f32::powf(1.0 - eps*eps*(GAMMA - 1.0)*m*m/(8.0*PI*PI*p_inf*rstar*rstar)*f.exp(), 1.0/(GAMMA - 1.0));
assert!(*rho > 0.0);
let p = f32::powf(*rho, GAMMA)*p_inf;
assert!(p > 0.0);
let u = 1.0 - eps*dy/(2.0*PI*p_inf.sqrt()*rstar*rstar)*(f/2.0).exp();
let v = eps*dx/(2.0*PI*p_inf.sqrt()*rstar*rstar)*(f/2.0).exp();
*rhou = *rho*u;
*rhov = *rho*v;
*e = p/(GAMMA - 1.0) + *rho*(u*u + v*v)/2.0;
});
}
}
#[derive(Copy, Clone)]
pub struct VortexParameters {
x0: f32,
y0: f32,
rstar: f32,
eps: f32,
mach: f32,
2020-01-25 19:40:55 +00:00
}
fn pressure(gamma: f32, rho: f32, rhou: f32, rhov: f32, e: f32) -> f32 {
(gamma - 1.0) * (e - (rhou * rhou + rhov * rhov) / (2.0 * rho))
}
#[allow(non_snake_case)]
2020-01-27 19:52:46 +00:00
pub(crate) fn RHS_trad<SBP: SbpOperator>(
2020-01-25 19:40:55 +00:00
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
2020-02-19 20:51:01 +00:00
boundaries: &BoundaryTerms,
2020-01-26 14:46:54 +00:00
tmp: &mut (Field, Field, Field, Field, Field, Field),
2020-01-25 19:40:55 +00:00
) {
let ehat = &mut tmp.0;
let fhat = &mut tmp.1;
2020-01-26 14:46:54 +00:00
fluxes((ehat, fhat), y, grid);
let dE = &mut tmp.2;
let dF = &mut tmp.3;
SBP::diffxi(ehat.rho(), dE.rho_mut());
SBP::diffxi(ehat.rhou(), dE.rhou_mut());
SBP::diffxi(ehat.rhov(), dE.rhov_mut());
SBP::diffxi(ehat.e(), dE.e_mut());
SBP::diffeta(fhat.rho(), dF.rho_mut());
SBP::diffeta(fhat.rhou(), dF.rhou_mut());
SBP::diffeta(fhat.rhov(), dF.rhov_mut());
SBP::diffeta(fhat.e(), dF.e_mut());
azip!((out in &mut k.0,
eflux in &dE.0,
fflux in &dF.0,
2020-01-25 19:40:55 +00:00
detj in &grid.detj.broadcast((4, y.ny(), y.nx())).unwrap()) {
*out = (-eflux - fflux)/detj
});
2020-02-19 20:51:01 +00:00
SAT_characteristics(k, y, grid, boundaries);
2020-01-25 19:40:55 +00:00
}
#[allow(non_snake_case)]
2020-01-27 19:52:46 +00:00
pub(crate) fn RHS_upwind<UO: UpwindOperator>(
2020-01-25 19:40:55 +00:00
k: &mut Field,
y: &Field,
grid: &Grid<UO>,
2020-02-19 20:51:01 +00:00
boundaries: &BoundaryTerms,
2020-01-26 14:46:54 +00:00
tmp: &mut (Field, Field, Field, Field, Field, Field),
2020-01-25 19:40:55 +00:00
) {
2020-01-26 14:46:54 +00:00
let ehat = &mut tmp.0;
let fhat = &mut tmp.1;
fluxes((ehat, fhat), y, grid);
let dE = &mut tmp.2;
let dF = &mut tmp.3;
UO::diffxi(ehat.rho(), dE.rho_mut());
UO::diffxi(ehat.rhou(), dE.rhou_mut());
UO::diffxi(ehat.rhov(), dE.rhov_mut());
UO::diffxi(ehat.e(), dE.e_mut());
UO::diffeta(fhat.rho(), dF.rho_mut());
UO::diffeta(fhat.rhou(), dF.rhou_mut());
UO::diffeta(fhat.rhov(), dF.rhov_mut());
UO::diffeta(fhat.e(), dF.e_mut());
let ad_xi = &mut tmp.4;
let ad_eta = &mut tmp.5;
upwind_dissipation((ad_xi, ad_eta), y, grid, (&mut tmp.0, &mut tmp.1));
azip!((out in &mut k.0,
eflux in &dE.0,
fflux in &dF.0,
ad_xi in &ad_xi.0,
ad_eta in &ad_eta.0,
detj in &grid.detj.broadcast((4, y.ny(), y.nx())).unwrap()) {
*out = (-eflux - fflux + ad_xi + ad_eta)/detj
});
2020-01-25 19:40:55 +00:00
2020-02-19 20:51:01 +00:00
SAT_characteristics(k, y, grid, boundaries);
2020-01-26 14:46:54 +00:00
}
2020-01-25 19:40:55 +00:00
2020-01-29 18:36:16 +00:00
#[allow(clippy::many_single_char_names)]
2020-01-26 14:46:54 +00:00
fn upwind_dissipation<UO: UpwindOperator>(
k: (&mut Field, &mut Field),
y: &Field,
grid: &Grid<UO>,
tmp: (&mut Field, &mut Field),
) {
2020-01-27 19:17:52 +00:00
let n = y.nx() * y.ny();
let yview = y.view().into_shape((4, n)).unwrap();
let mut tmp0 = tmp.0.view_mut().into_shape((4, n)).unwrap();
let mut tmp1 = tmp.1.view_mut().into_shape((4, n)).unwrap();
for (
((((((y, mut tmp0), mut tmp1), detj), detj_dxi_dx), detj_dxi_dy), detj_deta_dx),
detj_deta_dy,
) in yview
.axis_iter(ndarray::Axis(1))
.zip(tmp0.axis_iter_mut(ndarray::Axis(1)))
.zip(tmp1.axis_iter_mut(ndarray::Axis(1)))
.zip(grid.detj.iter())
.zip(grid.detj_dxi_dx.iter())
.zip(grid.detj_dxi_dy.iter())
.zip(grid.detj_deta_dx.iter())
.zip(grid.detj_deta_dy.iter())
{
let rho = y[0];
assert!(rho > 0.0);
let rhou = y[1];
let rhov = y[2];
let e = y[3];
let u = rhou / rho;
let v = rhov / rho;
let uhat = detj_dxi_dx / detj * u + detj_dxi_dy / detj * v;
let vhat = detj_deta_dx / detj * u + detj_deta_dy / detj * v;
let p = pressure(GAMMA, rho, rhou, rhov, e);
assert!(p > 0.0);
let c = (GAMMA * p / rho).sqrt();
let alpha_u = uhat.abs() + c;
let alpha_v = vhat.abs() + c;
tmp0[0] = alpha_u * rho * detj;
tmp1[0] = alpha_v * rho * detj;
tmp0[1] = alpha_u * rhou * detj;
tmp1[1] = alpha_v * rhou * detj;
tmp0[2] = alpha_u * rhov * detj;
tmp1[2] = alpha_v * rhov * detj;
tmp0[3] = alpha_u * e * detj;
tmp1[3] = alpha_v * e * detj;
2020-01-26 14:46:54 +00:00
}
UO::dissxi(tmp.0.rho(), k.0.rho_mut());
UO::dissxi(tmp.0.rhou(), k.0.rhou_mut());
UO::dissxi(tmp.0.rhov(), k.0.rhov_mut());
UO::dissxi(tmp.0.e(), k.0.e_mut());
UO::disseta(tmp.1.rho(), k.1.rho_mut());
UO::disseta(tmp.1.rhou(), k.1.rhou_mut());
UO::disseta(tmp.1.rhov(), k.1.rhov_mut());
UO::disseta(tmp.1.e(), k.1.e_mut());
2020-01-25 19:40:55 +00:00
}
2020-01-26 14:46:54 +00:00
fn fluxes<SBP: SbpOperator>(k: (&mut Field, &mut Field), y: &Field, grid: &Grid<SBP>) {
2020-01-25 19:40:55 +00:00
let j_dxi_dx = grid.detj_dxi_dx.view();
let j_dxi_dy = grid.detj_dxi_dy.view();
let j_deta_dx = grid.detj_deta_dx.view();
let j_deta_dy = grid.detj_deta_dy.view();
let rho = y.rho();
let rhou = y.rhou();
let rhov = y.rhov();
let e = y.e();
for j in 0..y.ny() {
for i in 0..y.nx() {
let rho = rho[(j, i)];
2020-01-26 14:46:54 +00:00
assert!(rho > 0.0);
2020-01-25 19:40:55 +00:00
let rhou = rhou[(j, i)];
let rhov = rhov[(j, i)];
let e = e[(j, i)];
let p = pressure(GAMMA, rho, rhou, rhov, e);
2020-01-26 14:46:54 +00:00
assert!(p > 0.0);
2020-01-25 19:40:55 +00:00
let ef = [
rhou,
rhou * rhou / rho + p,
rhou * rhov / rho,
rhou * (e + p) / rho,
];
let ff = [
rhov,
rhou * rhov / rho,
rhov * rhov / rho + p,
rhov * (e + p) / rho,
];
for comp in 0..4 {
let eflux = j_dxi_dx[(j, i)] * ef[comp] + j_dxi_dy[(j, i)] * ff[comp];
let fflux = j_deta_dx[(j, i)] * ef[comp] + j_deta_dy[(j, i)] * ff[comp];
2020-01-26 14:46:54 +00:00
k.0[(comp, j, i)] = eflux;
k.1[(comp, j, i)] = fflux;
2020-01-25 19:40:55 +00:00
}
}
}
}
#[derive(Clone, Debug)]
2020-02-19 19:00:52 +00:00
pub struct BoundaryTerms<'a> {
pub north: ArrayView2<'a, f32>,
pub south: ArrayView2<'a, f32>,
pub east: ArrayView2<'a, f32>,
pub west: ArrayView2<'a, f32>,
2020-01-25 19:40:55 +00:00
}
#[allow(non_snake_case)]
/// Boundary conditions (SAT)
fn SAT_characteristics<SBP: SbpOperator>(
k: &mut Field,
y: &Field,
grid: &Grid<SBP>,
2020-02-19 19:00:52 +00:00
boundaries: &BoundaryTerms,
2020-01-25 19:40:55 +00:00
) {
// North boundary
{
let hi = (k.ny() - 1) as f32 * SBP::h()[0];
let sign = -1.0;
let tau = 1.0;
2020-01-26 15:46:57 +00:00
let slice = s![y.ny() - 1, ..];
2020-01-25 19:40:55 +00:00
SAT_characteristic(
k.north_mut(),
y.north(),
2020-02-19 19:00:52 +00:00
boundaries.north,
2020-01-25 19:40:55 +00:00
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_deta_dx.slice(slice),
grid.detj_deta_dy.slice(slice),
);
}
// South boundary
{
let hi = (k.ny() - 1) as f32 * SBP::h()[0];
let sign = 1.0;
let tau = -1.0;
let slice = s![0, ..];
SAT_characteristic(
k.south_mut(),
y.south(),
2020-02-19 19:00:52 +00:00
boundaries.south,
2020-01-25 19:40:55 +00:00
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_deta_dx.slice(slice),
grid.detj_deta_dy.slice(slice),
);
}
// West Boundary
{
let hi = (k.nx() - 1) as f32 * SBP::h()[0];
let sign = 1.0;
let tau = -1.0;
let slice = s![.., 0];
SAT_characteristic(
k.west_mut(),
y.west(),
2020-02-19 19:00:52 +00:00
boundaries.west,
2020-01-25 19:40:55 +00:00
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_dxi_dx.slice(slice),
grid.detj_dxi_dy.slice(slice),
);
}
// East Boundary
{
let hi = (k.nx() - 1) as f32 * SBP::h()[0];
let sign = -1.0;
let tau = 1.0;
let slice = s![.., y.nx() - 1];
SAT_characteristic(
k.east_mut(),
y.east(),
2020-02-19 19:00:52 +00:00
boundaries.east,
2020-01-25 19:40:55 +00:00
hi,
sign,
tau,
grid.detj.slice(slice),
grid.detj_dxi_dx.slice(slice),
grid.detj_dxi_dy.slice(slice),
);
}
}
#[allow(non_snake_case)]
2020-01-29 18:36:16 +00:00
#[allow(clippy::many_single_char_names)]
#[allow(clippy::too_many_arguments)]
2020-01-25 19:40:55 +00:00
/// Boundary conditions (SAT)
fn SAT_characteristic(
mut k: ArrayViewMut2<f32>,
y: ArrayView2<f32>,
z: ArrayView2<f32>, // Size 4 x n (all components in line)
hi: f32,
sign: f32,
tau: f32,
detj: ArrayView1<f32>,
detj_d_dx: ArrayView1<f32>,
detj_d_dy: ArrayView1<f32>,
) {
assert_eq!(detj.shape(), detj_d_dx.shape());
assert_eq!(detj.shape(), detj_d_dy.shape());
assert_eq!(y.shape(), z.shape());
assert_eq!(y.shape()[0], 4);
assert_eq!(y.shape()[1], detj.shape()[0]);
2020-01-26 14:46:54 +00:00
for (((((mut k, y), z), detj), detj_d_dx), detj_d_dy) in k
.axis_iter_mut(ndarray::Axis(1))
.zip(y.axis_iter(ndarray::Axis(1)))
.zip(z.axis_iter(ndarray::Axis(1)))
.zip(detj.iter())
.zip(detj_d_dx.iter())
.zip(detj_d_dy.iter())
{
let rho = y[0];
let rhou = y[1];
let rhov = y[2];
let e = y[3];
2020-01-25 19:40:55 +00:00
2020-01-26 14:46:54 +00:00
let kx_ = detj_d_dx / detj;
let ky_ = detj_d_dy / detj;
2020-01-25 19:40:55 +00:00
let (kx, ky) = {
let r = f32::hypot(kx_, ky_);
(kx_ / r, ky_ / r)
};
let u = rhou / rho;
let v = rhov / rho;
let theta = kx * u + ky * v;
let p = pressure(GAMMA, rho, rhou, rhov, e);
let c = (GAMMA * p / rho).sqrt();
let phi2 = (GAMMA - 1.0) * (u * u + v * v) / 2.0;
let phi2_c2 = (phi2 + c * c) / (GAMMA - 1.0);
let T = [
[1.0, 0.0, 1.0, 1.0],
[u, ky, u + kx * c, u - kx * c],
[v, -kx, v + ky * c, v - ky * c],
[
phi2 / (GAMMA - 1.0),
ky * u - kx * v,
phi2_c2 + c * theta,
phi2_c2 - c * theta,
],
];
let U = kx_ * u + ky_ * v;
let L = [
U,
U,
U + c * f32::hypot(kx_, ky_),
U - c * f32::hypot(kx_, ky_),
];
let beta = 1.0 / (2.0 * c * c);
let TI = [
[
1.0 - phi2 / (c * c),
(GAMMA - 1.0) * u / (c * c),
(GAMMA - 1.0) * v / (c * c),
-(GAMMA - 1.0) / (c * c),
],
[-(ky * u - kx * v), ky, -kx, 0.0],
[
beta * (phi2 - c * theta),
beta * (kx * c - (GAMMA - 1.0) * u),
beta * (ky * c - (GAMMA - 1.0) * v),
beta * (GAMMA - 1.0),
],
[
beta * (phi2 + c * theta),
-beta * (kx * c + (GAMMA - 1.0) * u),
-beta * (ky * c + (GAMMA - 1.0) * v),
beta * (GAMMA - 1.0),
],
];
2020-01-26 14:46:54 +00:00
let res = [rho - z[0], rhou - z[1], rhov - z[2], e - z[3]];
2020-01-25 19:40:55 +00:00
let mut TIres = [0.0; 4];
2020-01-29 18:36:16 +00:00
#[allow(clippy::needless_range_loop)]
2020-01-25 19:40:55 +00:00
for row in 0..4 {
for col in 0..4 {
TIres[row] += TI[row][col] * res[col];
}
}
// L + sign(abs(L)) * TIres
let mut LTIres = [0.0; 4];
for row in 0..4 {
LTIres[row] = (L[row] + sign * L[row].abs()) * TIres[row];
}
// T*LTIres
let mut TLTIres = [0.0; 4];
2020-01-29 18:36:16 +00:00
#[allow(clippy::needless_range_loop)]
2020-01-25 19:40:55 +00:00
for row in 0..4 {
for col in 0..4 {
TLTIres[row] += T[row][col] * LTIres[col];
}
}
for comp in 0..4 {
2020-01-26 14:46:54 +00:00
k[comp] += hi * tau * TLTIres[comp];
2020-01-25 19:40:55 +00:00
}
}
}
2020-02-19 19:02:22 +00:00
#[derive(Debug)]
2020-01-25 19:40:55 +00:00
pub struct WorkBuffers {
k: [Field; 4],
2020-01-26 14:46:54 +00:00
tmp: (Field, Field, Field, Field, Field, Field),
2020-01-25 19:40:55 +00:00
}
impl WorkBuffers {
pub fn new(nx: usize, ny: usize) -> Self {
let arr3 = Field::new(nx, ny);
Self {
k: [arr3.clone(), arr3.clone(), arr3.clone(), arr3.clone()],
2020-01-26 14:46:54 +00:00
tmp: (
arr3.clone(),
arr3.clone(),
arr3.clone(),
arr3.clone(),
arr3.clone(),
arr3,
),
2020-01-25 19:40:55 +00:00
}
}
}